Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17005
標題: Biomechanics of sniffing behavior of marine hermit crabs: behavioral patterns of antennular flicking and the hydrodynamic effects
海生寄居蟹嗅聞行為的生物力學:觸角擺動行為模式與流體力學效應
作者: 曾宏焙
Tseng, Hung-Pei
關鍵字: kinematics
運動學
luid dynamic
boundary layer
Search-Refresh-Catch
流體力學
邊界層
搜尋--更新--擷取
出版社: 物理學系所
引用: Adrian R. J., Particel-Images techniques sor experiment fluid mechanics. Annu. Rev. Fluid Mech., 23, 261 304. (1991) Adrian R. J., Twenty years of particle image velocimetry. Experiments in Fluids, 39, 159-169. (2005) Atema J., Chemical Signals in the Marine Environment: Dispersal, Detection, and Temporal Signal Analysis. Proc. Natl. Acad. Sci. USA, 92, 62-66. (1995) Atema J., Eddy Chemotaxis and Odor Landscapes: Exploratio of Nature With Animal Sensors. Biol. Bull., 191, 129-I38. (1996) Breithaupt T., Fan Organs of Crayfish Enhance Chemical Information Flow. Biol. Bull., 200, 150 -154. (2001) Brun C., Tenchine D., Hopfinger E.J., Role of the shear layer instability in the near wake behavior of two side-by-side circular cylinders. Experiments in Fluids, 36, 334-343. (2004) Cengel Y. A., Cimbala J. M. Fluid mechanics. (2006) Denny M. W. Air and water. (1993) Døving K. B., Dubois-Dauphin M., Holley. A., Jourdan. F.,Functional anatomy of the olfactory organ of fish and the ciliary mechanism of water transport. Acta Zool., 58, 245-255. (1977) Goldman J. A., Mead K. S., Fluid dynamics of animal appendages that capture molecules Arthropod olfactory antennae. Chem. Senses, 26, 385-398. (2001) Goldman J. A., Patek S. N., Two sniffing strategies in palinurid lobsters. J. Exp. Biol., 205, 3891-3902. (2002) Ghiradella H. T., CASE J. F., Cronshaw J., Structure of aesthetascs in selected marine and Terrestria decapods: Chemoreceptor morphology and environment. Am. Zoologist, 8, 603-621. (1968) Halpern, M., Kubie, J. L., Chemical access to the vomeronasal organs of garter snakes. Physiol. Behav. 24, 367-371. (1980) Keller T. A., Weissburg M. J., Effects of Odor Flux and Pulse Rate on Chemosensory Tracking in Turbulent Odor Plumes by the Blue Crab, Callinectes sapidus. Biol. Bull.,207, 44 -55. (2004) Koehl M. A. R., Transitions in function at low Reynolds number: hair-bearing animal appendages. Math. Meth. Appl. Sci., 24,1523-1532. (2001) Koehl M. A. R. Biomechanics of microscopic appendages: functional shifts caused by changes in speed. Journal of Biomechanics, 37 , 789-795. (2004) Koehl M. A. R., The Fluid Mechanics of Arthropod Sniffing in Turbulent Odor Plumes. Chem. Senses, 31, 93-105. (2006) Kux J., Zeiske E., Osawa Y., Laser doppler velocimetry measurement in the model flow of a fish olfactory organ. Chem. Senses, 13, 257-265. (1988) Loudon, C., Koehl, M. A. R., Sniffing by a silkworm moth: wing fanning enhances air penetration through and pheromone interception by antennae. J. Exp. Biol., 203, 2977-2990. (2000) Mclaughlin P. A., Rahayu D. L., Komai T., Chan T. Y. A catalog of the hermit crabs (paguroidea) of Taiwan. (2007) Mellon D., Jr., Physiological characterization of antennular flicking reflexes in the crayfish. J Comp Physiol A, 180, 553-565. (1997) Mead K. S., Koehl M. A. R., O'Donnell M. J., Stomatopod sniffing: the scaling of chemosensory sensillae and flicking behavior with body size. J. Exp. Mar. Biol. Ecol., 241, 235-261. (1999) Mead K. S., From Odor Molecules to Plume Tracking: An Interdisciplinary, Multilevel Approach to Olfaction in Stomatopods. Integ. And Comp. Biol., 42, 258-264. (2002) Mead K. S., Weatherby T. M., Morphology of Stomatopod Chemosensory Sensilla Facilitates Fluid Sampling. Invertebrate Biology, 121, 148-157. (2002) Mead K. S., Wiley M. B., Koehl M. A. R., Koseff J. R., Fine-scale patterns of odor encounter by the antennules of mantis shrimp tracking turbulent plumes in wave-affected and unidirectional flow. J. Exp. Biol., 206, 181-193. (2003) Moore P. A., Atema J., Gerhardt G. A. Fluid dynamics and microscale chemical movement in the chemosensory appendages of the lobster, Homarus americanus, Chemical Senses, 16, 663-674. (1991) Panton R. L. Incompressible flow. (1984) Reidenbach M. A., George N., Koehl M. A. R. Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. J. Exp. Biol., 211, 2849-2858. (2008) Schneider R. W S., Lanzen J., Moore P. A. Boundary-layer effect on chemical signal movement near the antennae of the sphinx moth, Manduca sexta: temporal filters for olfaction. J Comp Physiol A, 182, 287-298. (1998) Stacey M. T., Mead K. S., Koehl M. A. R., Molecule capture by olfactory antennules: Mantis shrimp. J. Math. Biol., 44, 1-30. (2002) Snow P. J., The antennular activities of the hermit crab, Pagurus alaskensis (benedict). J. Exp. Biol., 58, 745-765. (1973) Snow P. J., The Motor Innervation and the Musculature of the Antennule of the Australian Mud Crab, Scylla serrata (Forskal) (Portunoidea, Brachyura). Proc. R. Soc. Lond., 207, 219-237. (1980) Vogel S. Comparative Biomechanics: Life's physical world. (2003) Willert C. E., Gharib M., Digital particle image velocimetry. Experiments in Fluids, 10, 181-193. (1991)
摘要: Olfaction relies on direct contact of odorants and the receptors, which can be facilitated by fluid motion and animal behaviors. This study examined the kinematics and fluid dynamic consequences of antennular flicking in marine hermit crabs, and further examined the biophysical mechanisms of odorant sampling. Marine hermit crabs sniff by flicking their antennules in three phases: downwards refresh stroke, stationary catch stroke, and translational motion. During the refresh stroke, Dardanus megistos had flicking speed of 189±27.68 mm/s, similar to 169.27±48.41 mm/s in Dardanus deformis; in this phase, sensory hairs on the antennules deform to increase the fluid volume housed by the hairs up to about 6 times its original volume. During the catch stroke, D. megistos had flicking speed of 104.8014±29.4868 mm/s, also similar to 116.2894±34.0268 mm/s in D. deformis; in this phase, both antennules and sensory hairs deform to contract the fluid housed by the hairs. Therefore, in marine hermit crabs, the flicking velocities of both strokes are similar, which is different from the velocity asymmetry reported previously in stomatopods and lobsters. The boundary layer thickness caused by the antennules, estimated during either flicking or translational motion, is about 0.7 mm and smaller than the hair length of 1.1 mm; hence while the hair base lies within the boundary layer, hair tips are exposed to the environments. When considering the effects of the hairs, at the antennule base, only when flicking velocity reaches maximum during refresh stroke would 20% hair length at the hair tips extend outside the boundary layer to make the hairs “leaky” so the external odorant plume could enter the inter-hair space to replace and refresh the old fluids. When the antennule and hairs contract, some odorants would stay within the hairs to diffuse to the receptors. Antennular flicking also induced surrounding fluids to generate vortex to disrupt and flush the sampled odorant plume, preventing re-sampling. In conclusion, I propose that marine hermit crabs sniff by flicking antennules with “Search-Refresh-Catch” modes mainly by deforming hairs and antennules to change inter-hair spacing for different leakiness. The induced vortex behind the antennules serves to prevent re-sampling.
嗅覺的產生必須靠氣味分子與嗅器接觸,而流體運動及生物行為有助於增加兩者接觸的機會。本研究以運動學和流體力學的觀點和技術,來解析海生寄居蟹的觸角擺動與周圍流體間的關係,以探討其搜尋與採樣氣味的物理機制。結果顯示,海生寄居蟹在進行嗅聞行為時,觸角和感覺毛會一同快速運動,觸角的嗅聞行為可分為三個階段:向下擺動的更新行程、原地收縮的擷取行程,以及觸角移動。在向下擺動的更新行程中,斑點真寄居蟹的擺速約為189±27.68 mm/s,接近畸形真寄居蟹的擺速169.27±48.41 mm/s;在這個階段,感覺毛會產生彎曲形變使毛間涵蓋的體積增加為原來的 6 倍左右。當觸角進入擷取行程時, 斑點真寄居蟹的擺速約為104.8014±29.4868 mm/s,亦近似斑點真寄居蟹的擺速約為 116.2894±34.0268 mm/s;此時觸角與感覺毛均收縮。因此有別於前人研究的蝦蛄和龍蝦,海生寄居蟹的更新與擷取行程速度差異不大。經由簡單估算,不論在觸角擺動或移動,觸角造成的邊界層的厚度約為 0.7 mm,小於感覺毛長度(約1.1 mm),因此感覺毛基部的間隙涵蓋在邊界層內,而末梢則裸露在邊界層之外。但若考量感覺毛所造成的邊界層,在觸角基部,僅更新行程中觸角擺動達最大速率時,感覺末梢約20%毛長部份會裸露在邊界層之外,使外界流體能通透進入那部份的感覺毛間隙,取代原本毛間的流體,達到更新氣味分子團的效果。在觸角收縮後,留存在毛間的流體會持續侷限於毛間,此時,氣味分子得以藉由擴散,傳送到嗅覺受器上。當觸角擺動時會牽引周圍的流體,而觸角後方的牽引流會演變成渦旋,在觸角擺動後破壞甫偵測的氣味分子團之結構,同時阻隔觸角移動造成的牽引,避免下次觸角擺動時再偵測同一個氣味分子團。綜上所述,我提出海生寄居蟹在嗅聞時觸角擺動的行為模式為「搜尋--更新--擷取」(“Search-Refresh-Catch”),在此過程中,感覺毛透過改變彼此間距來調整對外界流體的通透性;而觸角後方產生的牽引流會演變為渦旋來阻隔氣味團,避免重複偵測與擷取。
URI: http://hdl.handle.net/11455/17005
其他識別: U0005-1002201215532000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1002201215532000
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.