Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17008
標題: Photocurrent noise properties of Ag2Se quantum-dot sensitized solar cells
硒化銀量子點敏化太陽能電池之光電流雜訊特性
作者: 陳韶猷
Chen, Shao-Yu
關鍵字: Ag2Se quantum-dot
硒化銀
sensitized-solar-cells
noise
太陽能電池
雜訊
出版社: 物理學系所
引用: [1] “Compound semiconductors: Physics, technology and device concepts” [online] available http://www-opto.e-technik.uni-ulm.de/lehre/cs/. [2] “Silver(I) selenide” [online] available http://en.wikipedia.org/wiki/Silver(I)_selenide. [3] M. K. Nazeeruddin, F. de Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Takeru, M. Gratzel, J. Am. Chem. Soc 127,16835(2005) [4] “Optical air mass”[online] available http://www.tippens.info/TKB/Presentation.php?view =show&pageid=145. [5] S. M. Sze, Semiconductor Devices Physics and Technology, 2nd Edition, John Wiley & Sons, 2002. [6] M. Gratzel, Nature, 414, 338−344, 2001. [7] M. Gratzel, iorg Chem. 44, 6841-6851, 2005. [8] P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, J. Am. Chem, Soc. 126, 3868-3879, 2004. [9] A. Hagfeldt and M. Gratzel, Chem. Rev.95,49-68,1995. [10] K. Kalyanasundaram and M. Gratzel, Coord. Chem. Rev. 177, 347-414,1998. [11] M. Gratzel, Current Opinion in Colloid and Interface Science, 4, 314-321,1999. [12] Cahen et al., J. Phys. Chem. B, 104, 2053-2059,2000. [13] A. Fujishima et al., Sol. Energy Mater. Sol. Cells , 81, 197-203, 2004. [14] Ma,T., Fang, X., Akiyama, M., Inoue K., Noma, H., Abe, E., Properties of several types of novel counter electrodes for dye-sensitized solar cells, Journal of Electro analytical Chemistry and Photobiology A: Chemistry, 574, 77-83, 2004. [15] Charles P. Poole, Jr., Frank J. Owens, Introduction to Nanotechnology, John Wiley & Sons, 2003. [16] S.H. Choi, H. Song, I.K. Park, J.H. Yum, S.S. Kim, S. Lee, Y.E. Sung, Journal of Photochemistry and Photobiology, 179, 135−141, 2006. [17] 黃惠良,半導體太陽能電池元件原理,五南出版社,2008. [18] A. Tubtimtae, M. W. Lee, G. J. Wang, Journal of Power Sources, 196, 6603-6608, 2011. [19] M.J. Buckingham, NOISE IN ELECTRONIC DEVICES AND SYSTEMS [20] Aldert van der Ziel, NOISE IN SOLID STATE DEVICES AND CIRCUITS [21] J. B. Johnson, Phys. Rev. 32−97,1928. [22] H. Nyquist, Phys. Rev. 32−110,1928. [23] C. D. Motchenbacher, and J. a. Connelly, Low-Noise Electronic System Design., A Wiley-interscience Publication,1993. [24] M. Stoisiek and D. Wolf. J. Appl. Phys., 47−362, 1976. [25] F. N. Hooge and A. M. F. Hoppenbrowers. Physica, 45−368, 1969. [26] F. N. Hooge, Physica B, 83−14, 1976. [27] F. N. Hooge, Phys. Lett. A, 29−139,1969. [28] L. K. J. Vandamme, Noise as a diagnostic tool for quality and reliability of electronic devices, IEEE Trans. Electron Devices, vol. 41, no. 11, 2176-2187, Nov. 1994. [29] Sh. Kogan, Electronic Noise and Fluctuations In Solids. Cambridge University Press,1996. [30] N. B. Lukyanchikova, M. V. Petrichuk, N. P. Garbar, A. Mercha, E. Simoen, and C. Claeys, J. Apply. Phys., 94−4461, 2003. [31] P. Dutta and P. M. Horn, Rev. Mod. Phys., 53−497,1981. [32] Virginia Yong, Seng-Tiong Ho, and Robert P. H. Chang, Modeling and simulation for dye-sensitized solar cells, Appl. Phys.Lett.,92,143506,2008. [33] Tian Hanmin, Zhang Xiaobo, Yuan Shikui, Wang Xiangyan, Tian Zhipeng, Liu Bin, Wang Ying, Yu Tao, Zou Zhigang, An improved method to estimate the equivalent circuit parameters in DSSCs., Solar Energy 83, 715−720, 2009. [34] Liyuan Han, Naoki Koide, Yasuo Chiba, and Takehito Mitate, Appl. Phys.Lett., 84,13−29, 2004. [35] D. Brqhweiler, R. Seifert, G. Calzaferri, J. Phys. Chem., B 103 (1999) 6397. [36]“Silver sulfide” [online] available http://en.wikipedia.org/wiki/Silver_sulfide
摘要: 銀硫族化合物系統族中的硒化銀(Ag2Se)量子點具有較小能隙(0.07-0.15eV,300K)因此組裝成太陽能電池除了太陽光具有寬廣吸收範圍,所對應之外部量子效率(EQE~80%)光譜涵蓋所有太陽光譜350-2500nm,產生的光電流密度比N3染料太陽能電池高出4倍。是目前能被使用在太陽能電池發展上具有最佳高效率寬頻帶之光敏化劑。本研究是以硒化銀量子點做為光敏化劑製備太陽能電池,並使用雜訊量測方法了解Ag2Se量子點太陽能電池的組裝品質特性。 使用單光譜藍色LED波長465nm,黃色LED波長585nm, 紅色LED波長623nm模擬太陽光源並在不同光源照度下,對硒化銀量子點敏化太陽能電池之光電流雜訊特性做量測。在可見光(400nm-700nm)光譜間產生之光電流與其外部量子效率(350nm-800nm EQE~56%)一致,光電流大小與面積成正比,表示Ag2Se量子點光敏化劑具有高效率光子吸收特性。雜訊頻譜方面,半導體材料量子化在低頻率時出現有1/f雜訊,過度雜訊(excessive noise),勞倫茲雜訊(Lorentzian),RC阻抗響應變化,反應出半導體材料量子化的特性。在高頻率有熱阻抗雜訊,其工作面積=0.09cm2與0.16cm2分別在頻率400Hz,1000Hz處的阻抗值與現狀使用材料實際交流阻抗值是接近一致的,大面積有較低阻值之趨勢。其阻抗構成是來自於組成Ag2Se量子點太陽能電池之材料本質間之界面阻抗,其材料有光電極FTO/Ti-iP/TiO2/Ag2Se/電解液/Pt-對電極。 藉由雜訊測量所得到的雜訊頻譜可了解材料間存在著結構缺陷,可以評估材料的品質,透過硒化銀量子點敏化太陽能電池雜訊特性之測量有助於讓我們瞭解太陽能電池內部的運作機制及含有雜訊類型,對於太陽能電池的光電轉換效率及技術發展上能提供有益的資訊。
For the family of silver chalcogenide systems-Ag2Se quantum dots (QDs) have very small energy band gap(0.07-0.15eV,300K), the external quantum efficiency (EQE) spectrum of the assembled cells covers the entire solar power spectrum of 350-2500 nm with an average EQE of ~ 80% . The photocurrent that Ag2Se generates is four times higher than that of N3 dye. The results show that Ag2Se QDs can be used as a highly efficient broadband sensitizer for solar cells development. The research use Ag2Se QDs for sensitizer and make solar cells, by means of noise spectrum measurement methods to understand the Ag2Se QDs solar cells characteristics and properties quality. For simulating solar luminosity that use monochromatic blue /yellow/ red LED wavelength equals 465 nm/585nm/623nm respectively to irradiate and measure photocurrent noise properties under different illumination. In the visible light (400nm-700nm) spectrum the generated photocurrent have correspond with its external quantum efficiency(350nm-800nm EQE~56%) and photocurrent flow in proportion to active area that demonstrate the Ag2Se QDs have the property of high efficiency photon adsorption. In noise spectrum phases with semiconductor quantum dots which exist 1/f noise and excessive noise and Lorentzian noise and RC impedance response variety in low- frequency. Two types active area 0.09cm2 and 0.16cm2 frequency at 400Hz and 1000Hz have existed thermal noise in high frequency and the impedance values are correspond with AC impedance of modern practical materials that results show larger area have low impedance. Ag2Se QDs solar cell impedance consists of assembled material interfacial resistance and capacitance such as FTO/Ti-iP/TiO2/Ag2Se/ electrolyte /Pt-counter electrode. For the purpose of noise spectrum measurement and noise properties can understand the defects of material and reflecting quality and mechanisms through Ag2Se QDs solar cell that can provide a good reference in the power conversion efficiency and technologic development.
URI: http://hdl.handle.net/11455/17008
其他識別: U0005-1301201219283500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1301201219283500
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.