Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17014
標題: Subband Properties of PMOS Inversion Layer Using Strained Si1-xGex Alloys on (111) Si Substrate
應變矽鍺合金於矽(111)基板之PMOS反轉層次能帶特性
作者: 卓大鈞
Cho, Ta-Chun
關鍵字: strain
應變
subband
inversion layer
次能帶
反轉層
出版社: 物理學系所
引用: [1] S.M.Sze "Physics of semiconductor devices,2nd ed." [2] Minjoo L. Lee and Eugene A. Fitzgerald, J. Appl. Phys. 97, 011101 (2005) [3] R. Oberhuber, G. Zandler, and P. Vogl, Phys. Rev. B 58, 9941 (1998) [4] Ying Fu, Kaj J. Grahn, Magnus Willander, IEEE Transactions On Electron Devices, Vol. 41, 26(1994) [5] M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, J. Appl. Phys. 94, 1079 (2003) [6] Anh-Tuan Pham, Christoph Jungemann, and Bernd Meinerzhagen, IEEE Transactions On Electron Devices, Vol. 54, 2174(2007) [7] Y.Zhang et al. , J. Appl. Phys. 106, 083704 (2009) [8] P. W. Liu, J. W. Pan, T. Y. Chang, T. L. Tsai, T. F. Chen, Y. C. Liu,C. H. Tsai, B. C. Lan, Y. H. Lin, W. T. Chiang, and C. T. Tsai, "Superior current enhancement in SiGe channel p-MOSFETs fabricated on (110) surface" in VLSI Symp. Tech. Dig., 2006, pp. 148–149. [9] S. Joshi, S. Dey, S. Lee, C. Krug, H. J. Na, P. Sivasubramani, P. D. Kirsch,P. Majhi, W. Wang, A. Campion, and S. K. Banerjee, "3X hole mobility enhancement in epitaxially grown SiGe pMOSFETs on (110) Si substrates with high K/metal gate for hybrid orientation technology" in Proc. Device Res. Conf., 2007, pp. 53–54. [10] T. Sato, Y. Takeishi, and H. Hara, Jpn. J. Appl. Phys. 8, 588 (1969) [11] M. Yang, M. Ieong, L. Shi, K. Chan, V. Chan, A. Chou, E. Gusev, K. Jenkins, D. Boyd, Y. Ninomiya, D. Pendleton, Y. Supris, D. Heenan, J.Ott, K. Guarini, C. D’Emic, M. Cobb, P. Mooney, B. To, N. Rovedo, J.Benedict, R. Mo, and H. Ng, Tech. Dig. - Int. Electron Devices Meet. 2003, 453. [12] M. Yang, E. Gusev, M. Ieong, O. Gluschenkov, D. Boyd, K. Chan, P.Kozlowski, C. D’Emic, R. Sicina, P. Jamison, and A. Chou, IEEE Electron Device Lett. 24, 339 (2003) [13] T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, and S.Takagi, IEEE Trans. Electron Devices 52, 367 (2005) [14] H. Wang, S. Huang, C. Tsai, H. Lin, T. Lee, S. Chen, C. Diaz, M. Liang,and J. Sun, Tech. Dig. - Int. Electron Devices Meet. 2006, 309. [15] M. H. Lee, S. T. Chang, S. Maikap, C.-Y. Peng, and C.-H. Lee, IEEE Electron Device Letters, Vol. 31,141(2010) [16] Guangyu Sun, Yongke Sun, Toshikazu Nishida, and Scott E. Thompson, J. Appl. Phys. 102, 084501 (2007) [17] Q. M. Ma et al. ,Phys. Rev. B 47, 1936 (1993) [18] Uchida M, Kamakura Y, Taniguchi K. Performance enhancement of pMOSFETs depending on strain, channel direction, and material. SISPAD 2005:315–8. [19] Bing-Fong Hsieh, Shu-Tong Chang, Solid-State Electronics 60 (2011) 37–41 [20] C.-Y. Peng, F. Yuan, C.-Y. Yu, P.-S. Kuo, M. H. Lee, S. Maikap,C.-H. Hsu, and C. W. Liu, “Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si,” Appl. Phys. Lett., vol. 90, no. 1, p. 012 114,Jan. 2007. [21] S. Maikap, M. H. Lee, S. T. Chang, and C. W. Liu, “Characteristics of strained-germanium p- and n-channel field effect transistors on Si (111) substrate,” Semicond. Sci. Technol., vol. 22, no. 4, pp. 342–347, Apr. 2007. [22] Shun Lien Chuang, "Physics of optoelectronic devices" [23] W. Tom Wenckebach, "Essentials of semiconductor physics" [24] Ming-Fu Li, "Modern semiconductor quantum physics" [25]樊君偉,"應變矽碳合金應用於二維PMOS反轉層與塊材之價帶結構", 碩士論文, 國立中興大學物理系(2007) [26] J. M. Hinckley and J. Singh, J. Appl. Phys. 76, 4192 (1994) [27] C. Kittel, "Introduction to Solid State Physics, Eighth Edition" [28] J. M. Hinckley and J. Singh, Phys. Rev. B 41, 2912 (1990) [29] Yong-Hua Li and X. G. Gong, Phys. Rev. B 73, 245206 (2006) [30] D. Rideau et al. , Phys. Rev. B 74, 195208 (2006) [31] Jasprit Singh, "Electronic and Optoelectronic Properties of Semiconductor Structures" [32] Peter Y. Yu,Manuel Cardona, "Fundamentals of semiconductors : physics and materials properties" [33] Sakura Takeda et al., Physical Review B 82, 035318 (2010)
摘要: Integrated circuits materials gradually develop for SiGe alloys now,and MOSFET is an important component of integrated circuits.In this study,we research the valence band structure of strained SiGe alloys in the channel.We use k‧p method and triangular-well approximation to discuss subband properties of PMOS inversion layer.By changing the electric field and the Ge concentration,we compare the results between Si(110) and Si(111)surfaces,which includes density of states and 2D equi-energy contours of inversion layer.Furthermore,three kinds of effective mass─Quantized Mass,Carrier Concentration Mass,and Conductivity Mass are defined here. Theoretical calculation show density of states of Si(110) and Si(111) surfaces decrease as increasing Ge concentration.Near the band edges,density of states are almost constant.It could resemble the 2D free particles.And we fix the electric field as 1MV/cm, three kinds of effective mass decrease as increasing Ge concentration. It agrees to the experimental results that strained SiGe alloys and high Ge content can enhance mobility.
現在積體電路材料逐漸發展為矽鍺合金,而MOSFET是積體電路中重要的元件之一。我們在此研究通道材料為應變矽鍺合金的價帶結構,利用k‧p method和三角井近似探討PMOS反轉層次能帶性質,改變電場、改變鍺濃度,比較Si(110)、Si(111)的結果,包括反轉層Density of States、2D Equi-energy Contours,並在此定義了三種等效質量─Quantized Mass、Carrier Concentration Mass、Conductivity Mass。 理論計算發現,增加鍺濃度時,Si(110)、Si(111)的Density of States都有減小的趨勢,在Band edge附近的Density of States幾乎是常數,載子可近似為二維自由粒子,且固定電場F=1MV/cm,增加鍺濃度,三種等效質量都有減小的趨勢,這與應變矽鍺合金、高鍺濃度可提升載子遷移率的實驗結果一致。
URI: http://hdl.handle.net/11455/17014
其他識別: U0005-1907201123043600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907201123043600
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.