Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17022
DC FieldValueLanguage
dc.contributor王國禎zh_TW
dc.contributorGou-Jen Wangen_US
dc.contributor施仁斌zh_TW
dc.contributor戴明鳳zh_TW
dc.contributor陳志銘zh_TW
dc.contributorJen-Bin Shien_US
dc.contributorMing-Fong Taien_US
dc.contributorChih-Ming Chenen_US
dc.contributor.advisorMing-Wei Leeen_US
dc.contributor.advisor李明威zh_TW
dc.contributor.author賴明宏zh_TW
dc.contributor.authorLai, Ming-Hongen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:57:56Z-
dc.date.available2014-06-06T06:57:56Z-
dc.identifierU0005-2206201117434800zh_TW
dc.identifier.citation[1] M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg Chem,44, 6841, 2005. [2] Zhong-Sheng Wang,Masatoshi Yanagida,Kazuhiro Sayama and Hideki Sugihara, “Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency,”Chem. Mater, 18, 2912- 2916 ,2006. [3] B. O''Regan, M. Grätzel, Nature, 353 , 737-740, 1991. [4] B. O''Regan and M. Grätzel,“A low-cost,high-efficiency solar cell based on dye- sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737-740, 1991. [5] M. Grätzel,“Perspectives for dye-sensitized nanocrystalline solar cells,”progress in photovoltaics, vol. 8, no.1, pp. 171-185, 2000. [6] M. Grätzel, Nature, 414, 338−344, 2001. [7] Z. L. Wang,“Zinc oxide nanostructures: growth, properties and applications,”J. Phys. Condens. Matter. 16, 829-858, 2004. [8] J. B. Baxter and E. S. Aydil, Appl. Phys. Lett. 86, 053114, 2005. [9] J.B. Baxter, E.S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,” Solar Energy Materials & Solar Cells, 90, 607–622, 2006. [10] Du Pasguier A, Chen H, and Lu Y,“dye sensitized solar cells using using well-aligned zinc oxide nanotip arrays,”Appl. Phys. Lett. 89, 253513, 2006. [11] H. Chen, A. Du Pasquier, G. Saraf, J. Zhong, and Y. Lu, Semicon. Sci. and Tech. 23, 045004, 2008. [12] M. Guo, P. Diao, X. Wang, and S. Cai,“ The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films, ”J. Solid State Chem. 178, 3210, 2005. [13] K. Kakiuchi, E. Hosono, and S. Fujihara, J. Photochem. Photobiol. A. 179, 81, 2006. [14] C. H. Ku and J. J. Wu, “Chemical bath deposition of ZnO nanowire-nanooparticle composite electrodes for use in Dye-sensitized solar cells,” Nanotechnology. 18, 505706, 2007. [15] M. law, L. E. Greene, J. C. Johnson, et al.,“Nanowire dye-sensitized solar cells,” Nat. mater. 4, 155, 2005. [16] J. Y. Lao, J. Y. Huang, D. Z. Wang et al.,“ZnO nanobridges and nanonails,”Nano Lett. 3, 235, 2003. [17] C. Y. Geng, Y. Jiang, Y. Yao, et al., Adv. Funct. Mater. 14, 589, 2004. [18] Z. W. Pan, Z. R. Dai and Z. L. Wang,“Nanobelts of semiconducting oxides,”Science 291, 1947, 2001. [19] V. A. L. Roy, A. B. Djurisic, W. K. Chan et al., Appl. Phys. Lett. 83, 141, 2003. [20] Y. Sun, G. M. Fuge and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21, 2004. [21] Y. C. Kong, D. P. Yu, B. Zhang et al., Appl. Phys. Lett. 78, 407, 2001. [22] J. J. Wu and S. C. Liu, “Catalyst-Free Growth and Characterization of ZnO Nanorods, ”Adv. Mater. 14, 215, 2002. [23] P. D. Yang, H. Q. Yan, S. Mao et al., “Controlled growth of ZnO nanowires and their optical properties, ”Adv. Funct. Mater. 12, 323, 2002. [24]“Semiconductor photochemistry and photophysics”edited by V. Ramamurthy and K. S. Schanze (Marcel Dekker, Inc., 2003). [25] P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, J. Am. Chem. Soc. 126, 3868–3879, 2004. [26] Shogo Nakade, Yohei Makimoto, Wataru Kubo, Takayuki Kitamur, Yuji Wada, and Shozo Yanagida, J. Phys. Chem. B, 109, 3480–3487, 2005. [27] Zerihun Kebede1, Sten-Eric Lindquist,“Solar Energy Materials and Solar Cells”, 51, 291-303, 1998. [28] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt,* and S.-E. Lindquist*.“ High light-to-energy conversion efficiencies for Solar Cells based on nanostructured ZnO electrodes,” J. Phys. Chem. B 101,2598, 1997. [29] C. Lin, H. Lin, J. Li, X. Li, J. Alloys Compd., 462, 175-180, 2008. [30] D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, Chemical Physics Letters, 442, 348–353, 2007. [31] C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw, and D. L. Kwong, Appl. Phys. Lett. 92, 143101, 2008. [32] Alex B .F. Martinson, Jeffrey W. Elam, Joseph T. Hupp, Michael J. Pellin, Nano Lett. 7, 2183-2187, 2007. [33] K. Kakiuchi, M. Saito, S. Fujihara, Thin Solid Films,“ Fabrication of ZnO films consisting of densely accumulated mesoporous nanosheets and their dye-sensitized solar cell performance,”516, 2026-2030, 2008. [34] G. Rothenberger, D. Fitzmaurice, M. Grätzel,“Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films,”J. Phys. Chem., 96, 5983,1992. [35] A. Kay, Humphry-Baker,M. Grätzel,“Artificial Photosynthesis. 2. Investigations on the Mechanism of Photosensitization of Nanocrystalline TiO2 Solar Cells by Chlorophyll Derivatives,”J. Phys. Chem., 98, 952, 1994. [36] A. J. Mcevoy, M. Grätzel, Solar Energy Materials & Solar Cells, 32, 221, 1994. [37] K. S. Finnie, J. R. Bartlett and J. L. Woolfrey, Langmuir, 14, 2744–2749, 1998. [38] Anders Hagfeldt and Michael Grätzel,“Molecular Photovoltaics,”Chem. Res., 33, 269-277, 2000. [39] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell,” J. Phys. Chem. B 200, 107, 8981-8987, 2003. [40] T. Horiuchi, H. Miura, k. Sumioka, and s. Uchida,“High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes,”J. Am. Chem. Soc., 126, 12218-12219, 2004. [41] Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, and M. Grätzel, Inorg. Chem. 38, 6298-6305, 1999. [42] E. Hosono, Y. Mitsui and H. Zhou, Dalton Trans., 5439-5441, 2008. [43] Wei-Hao Chiu, Chia-Hua Lee, Hsin-Ming Cheng, Hsiu-Fen Lin,Shin-Chieh Liao, Jenn-Ming Wu, and Wen-Feng Hsieh, “Efficient electron transport in tetrapod-lik ZnO metal-free dye-sensitized solar cells, ” Energy Environ. Sci., 2, 694-698, 2009. [44] A. L. Barabasi, Mater. Scie. Eng. B 67, 23, 1999. [45] D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943, 1990. [46] K. Hiruma, App. Phys. Lett. 59, 431, 1991. [47] Z. Zhu, T. L. Chen, J. Warren, and R. M. Osgood,“Zinc Oxide Nanowires Grown by Vapor-Phase Transport Using Selected Metal Catalysts: A Comparative Study,” Chem. Mater. 17, 4227, 2005. [48] K. Yamamoto, K. Nagasawa, and T. Ohmori, Physics E, 24, 129, 2004. [49] H. J. Yuan, S. S. Xie, D. F. Liu, X. Q. Yan, Z. P. Zhou, L. J. Ci, J. X. Wang, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, and G. Wang, Chem. Phys. Lett. 371, 337, 2003. [50] A.M. Morales and C.M. Lieber,“A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208, 1998. [51] E.I. Givargizov, J. Cryst. Growth,“Fundamental aspects of VLS growth, ” 31, 20, 1975. [52] A. Sekar, S. H. Kim, A. Umar, and Y. B. Hahn, J. Crystal Growth,“Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties,”277, 471, 2005. [53] Y. Zhang, H. Jia, X. Luo, X. Chen, D. Yu and R. Wang,“Synthesis Microstructure, and Growth Mechanism of Dendrite ZnO Nanowires,” J. Phys. Chem. B 107, 8289, 2003. [54] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A.Voigt and B. E. Gnade, Applied Physics, 79, 7983-7990. 1996. [55] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, “ZnO on Si Technology for device applications,”Appl. Phys. Lett. 83, 3401, 2003. [56] C. A. Gueymard, D. Myers, K. Emery,“Proposed reference irradiance spectra for solar energy systems testing, ” Solar Energy 73, 443-467, 2002. [57] Motonari Adachi, Masaru Sakamoto, Jinting Jiu, Yukio Ogata, and Seiji Isoda, “Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy,” J. Phys. Chem. B, 110, 13872-13880, 2006. [58] Juan Bisquert and Vyacheslav S.Vikhrenko,“Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells,”J. Phys. Chem. B, 108, 2313-2322, 2004. [59] Juan Bisquert, “Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer,” J. Phys. Chem. B, 106, 325-333, 2002. [60] Juan Bisquert, Arie Zaban, and P. Salvador,“Analysis of the Mechanisms of Electron Recombination in Nanoporous TiO2 Dye-Sensitized Solar Cells. Nonequilibrium St,” J. Phys. Chem. B, 106, 8774-8782,2002. [61] James R. Jennings and Qing Wang, “Influence of Lithium Ion Concentration on Electron Injection, Transport, and Recombination in Dye-Sensitized Solar Cells,” J. Phys. Chem. C, 114, 1715-1724, 2010. [62] J. van de Lagemaat and A. J. Frank,“Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies,”J. Phys. Chem. B, 105, 11194-11205, 2001. [63] Nikos Kopidakis, Kurt D.Benkstein, Jao van de Lagemaat, and Arthur j. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,”J. Phys. Chem. B, 107, 11307-11315,2003. [64] Jin-Jen Wu, Guan-Ren Chen, Hung-Hsien Yang, Chen-Hao Ku, and Jr-Yuan Lai, Appl. Phys. Lett. 90, 213109, 2007. [65] M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. C, 111, 1035,2007. [66] J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Sero,“Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method,”J. Am.Chem. Soc. 126,13550,2004. [67] J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, and A. Zaban,“Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells,”J. Phys. Chem. B, 108, 8106, 2004. [68] A. Zaban, M. Greenshtein, and J. Bisquert, “Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements,” Chem. Phys. Chem. 4, 859, 2003. [69] Xiaoming Fang, Tingli Ma, Guoqing Guan, Morito Akiyama, Tetsya Kida, Eiichi Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,”Journal of Electroanalytical Chemistry, 570, 257–263, 2004. [70]陳佳靜,國立中興大學物理所碩士論文,2008. [71]莊宜珈,國立中興大學物理所碩士論文,2008. [72]李德龍,國立中興大學物理所碩士論文,2007.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/17022-
dc.description.abstract本實驗目的在開發不必使用FTO導電層的氧化鋅奈米柱染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSSC ),而以氧化鋅(ZnO)薄膜作為透明導電層。方法是用化學氣相沉積法(CVD)在藍寶石基板上同時成長氧化鋅薄膜及氧化鋅的柱狀結構。由於氧化鋅奈米柱與氧化鋅薄膜為同一介質的薄膜,能有效的減少光電子在不同介面上的耗損,提升光電流,增加太陽能電池的轉換效率。其製程在鎢舟盛以鋅粒,將藍寶石基板置於下游,加熱至溫度870℃,通入氬氣及氧氣,後續氧化鋅奈米柱浸泡於60℃的D149染料中八小時。配合SEM圖得知ZnO薄膜之厚度2~3μm,奈米柱直徑160~220nm,奈米柱長度12~15μm。其在AM1.5光源(100mW/cm2)照射下,最佳電流密度=15.7 mA/cm2,Voc=0.55V, FF=21.1%,效率1.82 %。此新型染料敏化太陽能電池比用FTO之傳統的染料敏化太陽能電池的效率1.37 %更高。開路電壓衰退分析得知電子的衰減時間大大的提升及避免介面電子的散射。zh_TW
dc.description.abstractThis work investigates the sequential growth of a ZnO film and ZnO nanorods using the one-step chemical vapor deposition (CVD) method. The ZnO film replaces fluorine-doped tin oxide as the transparent conducting oxide layer used in dye-sensitized solar cells (DSSCs). In the CVD growth, c-plane (0001) sapphire single-crystalline substrates were as loaded in an alumina boat downstream from the source material zinc. The furnace was heated to 870℃ and maintained at the heated temperature for 40 min. Ar and O2 gases were led into the quartz tube. Field-emission scanning electron microscopic images shows that the ZnO film had a thickness of 2~3 μm. The diameters of the nanorods were in the range of 160-220 nm and the length was 12~15μm. The ZnO film/rods structure was sensitized by immersion in a at 60℃, D149 dye solution for 8 h.Testing showed that under AM1.5 illumination, a short-circuit current density of 15.7mA/cm2, an open-circuit voltage of 0.55V, a fill factor of 21.1% and a conversion efficiency of 1.82% were achieved. Open-circuit voltage decay measurements show the response times in the New nanorod DSSC are much longer than that in the conventional DSSC. The enhanced response time is attributed to the new ZnO film/nanorod structure, which eliminates the junction between the film and the nanorods, reducing the carrier scattering at the boundary, hence, resulting in enhanced efficiency.en_US
dc.description.tableofcontents第一章 緒論...............................................1 1.1.前言........................................................1 1.2.太陽能光電..................................................3 1.2.1.太陽光譜................................................3 1.2.2.太陽能電池電壓電流量測特性..............................4 1.2.3.太陽能I-V曲線量測系統..................................5 1.2.4.太陽能電池型式簡介......................................8 1.2.4.1.矽晶體太陽電池......................................9 1.2.4.2.半導體無機太陽能電池................................10 1.2.4.3.染料敏化太陽能電池..................................11 1.3.奈米材料應用................................................12 1.4.文獻回顧....................................................14 1.5.研究動機....................................................18 第二章 染料敏化太陽能電池......................................20 2.1.染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSSC)原理.........20 2.2.工作基板(substrate)............................................24 2.3.電解液(electrolyte) ............................................24 2.4.金屬對電極...................................................26 2.5.染料.........................................................27 2.6.染料敏化太陽能電池之組裝....................................33 2.7.實驗藥品....................................................35 第三章 氧化鋅奈米柱生長之原理、技術及結果...................37 3.1.氧化鋅晶體結構與特性........................................37 3.2.氧化鋅奈米柱/膜成長模式.....................................38 3.2.1.成長理論................................................40 3.2.2.氧化鋅奈米柱/膜成長方式.................................41 3.2.3.各種成長氧化鋅奈米柱方法…………………………………………42 3.3.反應溫度對氧化鋅柱/膜之影响.................................48 3.3.1.X光繞射分析............................................49 3.4.O2流量對氧化鋅奈米柱之影响.................................52 3.5.高解析穿透式電子顯微鏡(HR-TEM) ...........................54 3.6.光子激發光譜儀(Photoluminescence, PL). ........................56 3.7.外部量子效率(External Quantum Efficiency, EQE)量測..............57 3.8.塲發射掃描式電子顯微鏡(FE-SEM).............................59 3.8.1.化學氣相沉積(Chemical Vapor Deposition, CVD)介紹..........60 3.8.2.化學氣相沉積之Zn Powder介紹...........................63 3.8.3.水熱法(Hydrothermal Synthesis)介紹........................65 3.8.4.化學浴沉積法(Chemical Bath Deposition, CBD)介紹...........67 第四章 結果與討論.............................................69 4.1.染料敏化太陽能電池電壓電流量測結果..........................69 4.2.New DSSC EQE (External Quantum Efficiency)量測分析.............71 4.3.交流阻抗分析(Electrochemical impedance Spectroscopy, EIS).........72 4.4.開路電壓衰退(Open-Circuit Voltage Decay, OCVD)分析............78 第五章 結論.....................................................81 參考文獻........................................................82zh_TW
dc.language.isoen_USzh_TW
dc.publisher物理學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2206201117434800en_US
dc.subjectsapphireen_US
dc.subject藍寶石zh_TW
dc.titleOne-step growth of ZnO nanorods and a ZnO film for dye-sensitized solar cellsen_US
dc.title單步驟成長氧化鋅膜和奈米柱染料敏化太陽電池zh_TW
dc.typeThesis and Dissertationzh_TW
Appears in Collections:物理學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.