Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17044
標題: Using Cross-spectrum Technique to study the Low-frequency Noise of GaN Nanowire
利用相關頻譜量測技術探討氮化鎵奈米線低頻雜訊
作者: 魏迦安
Wei, Jia-An
關鍵字: GaN
氮化鎵
nanowire
1/f
noise
spectrum
奈米線
低頻
雜訊
頻譜
出版社: 物理學系所
引用: [1] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang, Nature. 422, 599 (2003). [2] S. J. Pearton and F. Ren, Adv. Mater. 12, 1571 (2000). [3] S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994). [4] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Nano Lett. 2, 101 (2002). [5] H. Y. Cha, H. Wu, M. Chandrashekhar, Y. C. Choi, S. Chae, G. Koley, and M. G. Spencer, Nanotechnology. 17, 1264 (2006). [6] H. Y. Cha, H. Wu, S. Chae, and M. G. Spencer, J. Appl. Phys. 100, 024307 (2006). [7] C. C. Chen, C. C. Yeh, C. H. Chen, M Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, J. Am. Chem. Soc. 123, 2791 (2001). [8] J. B. Johnson, Phys. Rev. 32, 97 (1928). [9] H. Nyquist, Phys. Rev. 32, 110 (1928). [10] A. Ziel, Noise: Sources, Characterization Measurement (1972). [11] J. B. Johnson, Phys. Rev. 26, 71 (1925). [12] F. N. Hooge, Phys. Lett. 29A, 139 (1969). [13] P. G. Collins, M. S. Fuhrer, and A. Zettla, Appl. Phys. Lett.76, 894 (2000). [14] E. S. Snow, J. P. Novak, M. D. Lay, and F. K. Perkins, Appl. Phys. Lett. 85, 4172 (2004). [15] M. Brimana, K. Bradley, and G. Gruner, J. Appl. Phys. 100, 013505 (2006). [16] A. Bid, A. Bora and A. Raychaudhuri, Nanotechnology. 17, 152 (2006). [17] A. D. V. Rheenen, G. Bosman, and R. J. J. Zijlstra, Solid-State Electron. 30, 259 (1987). [18] P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981). [19] S. Reza, Q. T. Huynh, and G. Bosman, J. Appl. Phys. 99, 114309 (2006). [20] E. Stern, G. Cheng, M. P. Young, and M. A. Reed, Appl. Phys. Lett. 88, 053106 (2006). [21] S. Ruvimov, Z. L. Weber, and J. Washburn, Appl. Phys. Lett. 69, 11 (1996).
摘要: 伴隨著電子元件的縮小,科技發展開始進入奈米時代,而其中雜訊在奈米級半導體的電特性中扮演極重要的角色。 我們使用電子束微影製程在氮化鎵奈米線上製作多個歐姆接點,嘗試用電性測量與相關頻譜量測技術這兩種方式來確認奈米線與歐姆接點各自的電阻與雜訊值,並交互對照比較。 觀察由相關頻譜量測所分離出的氮化鎵奈米線雜訊,我們發現氮化鎵奈米線的低頻雜訊是非常微小的,主要的1/f雜訊來源皆因電流通過歐姆接面產生。這同時也說明了降低歐姆接點電阻值將有助於降低氮化鎵奈米元件的低頻雜訊。 另外我們也由兩線雜訊量測,觀察溫度145K~300K,不同偏壓電流下的Lorentzian 雜訊變化,從Lorentzian 雜訊的特徵時間與溫度關係中我們找出載子從缺陷中逃出所需的活化能。
We successfully fabricated multi-electrode devices on GaN nanowires (NWs) and extracted the low-frequency noise of GaN NWs by cross-spectrum technique. From results of cross-spectrum measurement, we found that the noise of GaN NWs is much smaller than contact noise. It also indicates that the improvement of the ohmic contact can reduce the noise magnitude of GaN NWs devices. According to the temperature-dependence measurement, we can obtain the activation energy, Ea , from the Arrhenius plot of the characteristic time, τ, associated with the Lorentzian noise. Ea is around 270meV from 215K to 300K, and 320meV from 145K to 205K, respectively.
URI: http://hdl.handle.net/11455/17044
其他識別: U0005-2208200718450500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200718450500
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.