Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17051
DC FieldValueLanguage
dc.contributor洪連輝zh_TW
dc.contributorLance Horngen_US
dc.contributor吳仲卿zh_TW
dc.contributor孫建文zh_TW
dc.contributorJong-Ching Wuen_US
dc.contributorKien-Wen Sunen_US
dc.contributor.advisor孫允武zh_TW
dc.contributor.advisorYuen-Wuu Suenen_US
dc.contributor.author黃少毓zh_TW
dc.contributor.authorHuang, Saow-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:58:00Z-
dc.date.available2014-06-06T06:58:00Z-
dc.identifierU0005-2208200723372400zh_TW
dc.identifier.citation[1]. E. Ruiz, S. Alvarez and P. Alemany, Phys. Rev. B. 49, 7115 (1993). [2]. T. Mattlia and R. M. Nieminen, Phys. Rev. B. 54, 16676 (1996). [3]. Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Nano Lett. 2, 101 (2002). [4]. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3 149 (2003). [5]. E. S. Snow, J. P. Novak, M. D. Lay, and F. K. Perkins, Appl. Phys. Lett. 85 4172 (2004). [6]. S. Chopra, K. McGuire, N. Gothard, and A. M. Raoa and A. Pham, Appl. Phys. Lett. 83, 6951 (2006). [7]. Y.G. Cao, X.L. Chen, Y.C. Lan, J.Y. Li, Y.P. Xu, T. Xu, Q.L. Liu, J.K. Liang, Journal of Crystal Growth. 213, 198 (2000). [8]. J. Yang, T. W. Liu, C. W. Hsu, L. C. Chen, K. H. Chen and C. C. Chen, Nanotechnology. 17, 321 (2006). [9]. F. N. Hooge, Phys. Lett. A, 29, 139 (1969). [10]. P. Dutta and P. M. Horn, Rev. Mod. Phys, 53, 497 (1981). [11]. A. V. Ziel, Appl. Phys. Lett. 33, 10 (1978). [12]. P. G. Collins, M. S. Fuhrer, and A. Zettl, Appl. Phys. Lett. 76, 894 (2000). [13]. J. B. Johnson, Phys. Rev. 32, 97 (1928). [14]. H. Nyquist, Phys. Rev. 32, 110 (1928). [15]. W. Schottky, Ann. Phy, 57, 541 (1918). [16]. S. Kogan, Electronic noise and fluctuations in solids. Cambridge university press, 1996. [17]. S. Reza, Q. T. Huynh, G. Bosmana, J. S. Oakley and A. G. Rinzler, J. Appl. Phys., 75, 7365 (1994). [18]. Stanford Research Systems Inc, Model SR560 Low-Noise Voltage Preamplifer, 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A, 1995. [19]. Stanford Research Systems Inc, Model SR785 Network Signal Analyzer, 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A, 1995.en_US
dc.identifier.urihttp://hdl.handle.net/11455/17051-
dc.description.abstract在本實驗中我們說明氮化鋁奈米線的歐姆接點的電性。儘管氮化鋁在各方面擁有許多良好特性,但其高能隙使氮化鋁的歐姆接點不容易製造。在此報告前,相對比較少的文獻探討到氮化鋁奈米線的歐姆接點的製作與電性。 本實驗的氮化鋁奈米線上的電極由電子微影技術完成和舉離過程與熱退火的方法。我們成功地利用 Ti/Al 與 Al 材料,製造出氮化鋁奈米線歐姆接點,並且仔細地測量氮化鋁奈米線在室溫下的 1/f 的雜訊特性與 Lorentzian 雜訊特性。 由本實驗的 Lorentzian 雜訊我們可得到時間常數,再利用Arrhenius公式,得到在室溫到275k,對應到0.3nA與1.2nA的電流中,活化能為541meV。zh_TW
dc.description.abstractWe report the fabrication and the electrical properties of ohmic contacts for AlN nanowires (NWs) devices. Although AlN possesses superior properties in many aspects, its high energy gap makes it difficult to fabricate ohmic contacts. Prior to this study, comparatively little experiments were conducted about the ohmic contacts and electrical properties of AlN NWs. The electrodes of the AlN NW devices were defined by e-beam lithography. Afterward the devices were annealed at 430C. We have successfully fabricated ohmic contacts with Ti/Al and Al and investigated the behavior of 1/f noise and Lorentzian-like noise at room temperature. From the Arrhenius plot of the time constant associated with the Lorentzian noise we can obtain the activation energy, Ea, to be 541meV in the temperature from 300K to 275K with different bias at 0.3 nA and 1.5 nA.en_US
dc.description.tableofcontentsContents Chapter 1 Introductions 1 1.1 Characteristic of semiconductor nanowires 1 1.2 Growth of AlN nanowires 2 1.3 Brief review of noise in solid…………………………………………………….2 1.3.1 Flicker noise 3 1.3.2 Thermal noise 4 1.3.3 Shot noise 4 1.3.4 Lorentzian-like noise 4 Chapter 2 Fabrication of the devices 10 2.1 Preparations of AlN nanowires 10 2.2 Fabricating electrodes by E-beam lithography 10 2.3 Post production of samples 13 Chapter 3 Experimental set-up 16 3.1. Instrumentation 16 3.1.1 Network signal analyzer Stanford SR785 16 3.1.2 Low-noise preamplifier SR 560 16 3.1.3 Homemade ultra-low-noise JFET-input preamplifiers 16 3.1.4 Environment for sample 16 3.2 Temperature dependence 17 3.2.1 At room temperature 17 3.2.2 Temperature dependence 17 Chapter 4 Experimental Results and discussions 19 4.1 Results and discussions 19 4.1.1 I-V characteristic 19 4.1.2 Noise behavior 19 (1) At Room Temperature 19 (2) Temperature Dependence 20 (3) Noise amplitude A and frequency exponent α 21 4.2 Conclusions 28 List of figures Fig. 1.1: Wurtzite crystal structure of AlN, Black are Al atoms, white ones are N atom, from [1]…...…………………………………………………………………….6 Fig. 1.2: Schematic diagram of the AlN samples are shown. The SEM image of AlN NWs are 1000, 5000 and 10000 magnification respectively. (This image was provided by Mr. L. T. Liu from the laboratory of Prof. C. C. Chen in the department of chemistry, National Taiwan Normal University)…………..……7 Fig. 1.3: (a) Angular dependence of XRD (b) Photoluminescence spectrum of AlN NWs centered about 3.55 eV and grown on Si substrate……………………………..8 Fig. 1.4: TEM image and selected-area electron diffraction (SAED) (inset) pattern of a single nanorod [8]………………………………………………………………9 Fig. 1.5: Corresponding CL spectrum exhibiting a violet-band broad peak that can be fitted well by three Gaussian curves with a major peak centred about 2.97 eV (417 nm), a weak peak at 3.37 eV (368 nm) and a shoulder at 3.65 eV (340 nm) [8]……………………………………………………………………………….9 Fig. 2.1: Locating the position of a NW by the software (magnification 700) was illustrated………………………………………………………………………14 Fig. 2.2: A short circuit between the two electrodes (magnification 3000) was observed, The inset shows a improper DesignCAD layout which we can observed marker is placed at the midpoint of the sweep side will cause short circuit………..…14 Fig. 2.3: NW with the well defined electrodes (magnification 1000 and 5000). The right inset is the layout of electrodes with NPGS area dosage by DesignCAD….…15 Fig. 3.1: Schematic diagram of the direct FFT measurement…………………………..18 Fig. 4.1: I-V characteristics of Ti/Al deposited and annealed at 440 °C for 3 minutes for Ni ohmic contact. The inset shows SEM image of AlN NW with six well defined electrodes (magnification 7000)………………………………….…..21 Fig. 4.2: I-V characteristics shown that repeated thermal annealing at 430 °C for 180 seconds improves ohmic contacts……………………………………………..21 Fig. 4.3: The voltage noise power SV at room temperature, when the current through the AlN-NW is increased the 1/f noise rise up. The ohmic contacts are fabricated by Al…………………………………………………………………………...22 Fig. 4.4: The ohmic contacts are fabricated by Ti/Al……………………………………22 Fig. 4.5: Lorentzian time constant τ is 0.6636 s at 295 K by fitting the Lorentzian Noise…………………………………………………………………………..23 Fig. 4.6: Ti/Al and Al materials as the electrodes on AlN NW at room temperature α verse I at different current, the range of α is between 1.3 to 1.2…………..23 Fig. 4.7: α verse I at different temperature, the range of α is between 1.4 to 1.2……..24 Fig. 4.8: Noise amplitude versus the temperature……………………………………….24 Fig. 4.9: Activation frequency verse temperature………………………………………25 List of tables Table. 1.1: Electrical properties of AlN, GaN and InN in bulk…………………………6 Table. 1.2: structural properties of AlN bulks and nanowires…………………………..7 Table. 4.1: Noise behavior can be characterized by comparing Ti/Al and Al materials as the electrodes on AlN NW at room temperature. …………………………26zh_TW
dc.language.isoen_USzh_TW
dc.publisher物理學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200723372400en_US
dc.subjectAlNen_US
dc.subject氮化鋁zh_TW
dc.subjectohmicen_US
dc.subjectcontacten_US
dc.subjectnanowireen_US
dc.subjectlow frequencyen_US
dc.subjectnoiseen_US
dc.subject歐姆接點zh_TW
dc.subject奈米線zh_TW
dc.subject低頻zh_TW
dc.subject雜訊zh_TW
dc.title氮化鋁奈米線之歐姆接點製作與低頻雜訊特性zh_TW
dc.titleFabrications of ohmic contacts and properties of low-frequency noise of AlN nanowiresen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:物理學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.