Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17063
標題: 以原子層沉積法生長氧化鋅薄膜於(0001)面氧化鋁基板及薄膜特性之研究
Growth and characterization of ZnO films on (0001) sapphire substrates using atomic layer deposition
作者: Lin, Ping-Yuan
林平原
關鍵字: 氧化鋅
ZnO
原子層沉積
緩衝層
退火
atomic layer deposition
buffer layer
annealing
出版社: 物理學系所
引用: [1] H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004). [2] J. H. Park, S. J. Jang, S. S. Kim and B. T. Lee, Appl. Phys. Lett. 89, 121108 (2006). [3] Y. L. Wang, G. Y. Wang, X. Z. Zhang and D. P. Yu, J. Crystal Growth 287, 89 (2006). [4] J. B. Baxter and E. S. Aydil, J. Crystal Growth 274, 407 (2005). [5] “ Zinc Oxide Bulk, Thin Films and Nanostructures : Processing, Properties and Applications ”, edited by Chennupati Jagadish and Stephen J. Pearton (2006). [6] J. Lim, K. Shin, H. W. Kim and C. Lee, Mater. Sci. Eng. B107, 301 (2004). [7] J. Chen and T. Fujita, Jpn. J. Appl. Phys. 42, 602 (2003). [8] P. Nunes, D. Costa, E. Fortunato and R. Martins, Vacuum 64, 293 (2002). [9] Y. Miao, Z. Ye, W. Xu, F. Chen, X. Zhou, B. Zhao, L. Zhu and J. Lu, Appl. Surf. Sci. 252, 7953 (2006). [10] K. H. Bang, D. K. Hwang, M. C. Jeong, K. S. Sohn and J. M. Myoung, Solid State Commun. 126, 623 (2003). [11] Y. S. Jung, O. V. Kononenko and W. K. Choi, Solid State Commun. 137, 474 (2006). [12] P. Fons, K. Iwata, S. Niki, A. Yamada and K. Matsubara, J. Crystal Growth 201, 627 (1999). [13] F. Xiu, Z. Yang, D. Zhao, J. Liu, K. A. Alim, A. A. Balandin, M. E. Itkis and R. C. Haddon, J. Crystal Growth 286, 61 (2006). [14] K. K. Kim, J. H. Song, H. J. Jung and W. K. Choi, J. Appl. Phys. 87, 7 (2000). [15] B. Nikoobakht, A. Davydov and S. J. Stranick, Mat. Res. Soc. 818 (2004). [16] “Atomic Layer Epitaxy”, edited by T. Suntola and M. Simposn, (1990). [17] 楊明輝,“透明導電膜”,藝軒出版 (2006). [18] Y. W. Heo, K. Ip, S. J. Pearton, D. P. Norton and J. D. Budai, Appl. Surface Sci. 252, 7442 (2006). [19] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi and S. J. Xu, Appl. Phys. Lett. 85, 1601 (2004). [20] E. G. Bylander, J. Appl. Phys. 49, 1188 (1978). [21] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voiget, Appl. Phys. Lett. 68, 403 (1996). [22] B. Lin and Z. Fu, Appl. Phys. Lett. 79, 943 (2001). [23] 陳力俊等著, “材料電子顯微鏡學” ,國科會精密儀器發展中心. [24] 吳秉諭, “氮磷化銦鎵的光學特性研究” ,國立台灣科技大學電子工 程研究所 碩士論文, 2006. [25] J. Dai, H. Liu, W. Fang, L. Wang, Y. Pu and F. Jiang, Mat. Sci. & Eng. B, 127(2006). [26] J. Dai, H. Liu, W. Fang, L. Wang, Y. Pu, Y. Chen and F. Jiang, J. Crystal Growth 283, 93 (2005). [27] C. Klingshirn, Phys. Status Solidi (a) 71, 547 (1975). [28] 許樹恩等著, “X光繞射原理與材料結構分析” ,中國材料科學學會.
摘要: ZnO films were grown on (0001) sapphire substrate by atomic layer deposition (ALD) using diethylzinc (DEZn) and nitrous oxide (N2O) as precursors. Purified N2 was utilized to serve as carrier gas. The physical properties and surface morphologies of ZnO films were investigated by photoluminescence spectroscopy (PL), X-ray diffraction (XRD), scanning electron microscopy (SEM), and surface photovoltage spectroscopy (SPV). It was found that LT-ZnO buffer-layer did help to improve the surface morphologies and optical characteristics of the ZnO films. In particular, both post-annealing and buffer-layer annealing processes allow to achieve high quality ZnO films with superior optical properties.
本研究採用原子層沉積法成長氧化鋅薄膜於(0001)面氧化鋁基板上。實驗以二乙基鋅(DEZn)與高純度笑氣(N2O)做為II與VI族的前驅氣體,使用高度純化之氮氣當作輸送氣體。藉由改變低溫氧化鋅緩衝層之厚度和成長溫度及氧化鋅薄膜成長後退火或氧化鋅緩衝層退火之製程來改善氧化鋅薄膜之品質。氧化鋅薄膜之物理特性與表面型態分別使用光激發光頻譜量測、X-光繞射、掃描式電子顯微鏡與表面光電壓頻譜量測來鑑定。研究結果顯示不同厚度的低溫氧化鋅緩衝層會影響後續成長的氧化鋅薄膜之表面型態與光學特性,而前述兩種退火製程均能有效地改善氧化鋅薄膜的光學特性及材料品質。
URI: http://hdl.handle.net/11455/17063
其他識別: U0005-3007200716320700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007200716320700
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.