Please use this identifier to cite or link to this item:
標題: 相異顆粒在振動系統中的遷移
Migration in binary granular mixture inder external shaking
作者: 曾飛煥
Chung, Fei-Fang
關鍵字: granular physics
Brazul nut effect
出版社: 物理學系所
引用: [1] Halliday and Resnick, Fundamentals of Physics Extended Edition, Wiley(1993). [2] L.D. Landau and E.M. Lifshitz, Fluid Mechanics,亞東書局(1980). [3] Olmsted and Williams, Chemistry 4 Edition, Wiley(2006). [4] M.Faraday, Philos. Trans. Roy. Soc. London 52, 299 (1857). [5] H. K. Pak and R. P. Behringer, Phys. Rev. Lett. 71, 1832 (1993). Surface waves in vertically vibrated granular materials [6] F. Melo, P. Umbanhowar, and H. L. Swinney, Phys. Rev. Lett. 72, 172 (1994). Transition to parametric wave patterns in a vertically oscillated granular layer. [7] F. Melo, P. Umbanhowar, and H. L. Swinney, Phys. Rev. Lett. 75, 3838 (1995). Hexagons,Kinks, and Disorder in Oscillated Granular Layers. [8] E.Clement, L. Vanel, J. Rajchenbach, and J. Duran, Phys. Rev. E, 53, 2972 (1996). Pattern formation in a vibrated two-dimensional granular layer. [9] M. Isobe, Phys. Rev. E 64, 031304 (2001). Bifurcation of a driven granular system under gravity [10] Yunson Du, Hao Li, and Leo P. Kadanoff, Phys. Rev. Lett. Vol. 74, 1268 (1995). Breakdown of Hyrodynamics in a One-Dimensional System of Inelastic Particles. [11] R.D. Wildman and D.J. Parker, Phys. Rev. Lett. Vol. 88, 064301 (2002). Coexistence of Two Granular Temperatures in Binary Vibrofluidized Beds. [12] K.Feitosa and N. Menon, Phys. Rev. Lett. Vol. 88, 198301(2002). Breakdown of Energy Equipartition in 2D Binary Vibrated Granular Gas. [13] Alain Barrat, Emmanuel Trizac, Granular Matter 4, 57-63 (2002). Lack of energy equipartition in homogeneous heated binary granular mixtures. [14] J. Duran, Sand, Powder, and Grains: An Introduction to the Physics of Granular Materials,Springer-Verlag, NY (1997). [15] L. Vanel, D. Howell, D. Clark, R. P. Behringer, and E. Clement, Phys. Rev. E 60, 5040 (1999). Memories in sand: Experiment tests of construction history on stress distribution under sandpiles. [16] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod. Phys. 68, 1259 (1996). Granular solids, liquids, and gases. [17] H.A. Makse, S. Havlin, P.R. King and H.E. Stanley, Nature 386, 379(1997). Spontaneous stratification in granular mixture. [18] P. Bak, C. Tang and K. Wiesenfeld, Physical Review Letters 59, 381(1987). Self-organized criticality, An explanation of 1/f noise. [19] C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and L. Swinney, Phys. Rev. Lett. vol.80, 57(1998). Pattern in 3D vertically oscillated granular layers: Simulation and Experiment. [20] Y-h. Taguchi, Phys. Rev. Lett. Vol. 69, 1367(1992). New origin of convection motion: Elastically Induced Convection in Granular Materials. [21] J.A. C. Gallas, H.J. Herrmann, and S. Sokolowski, Phys. Rev. Lett. Vol. 69, 1371(1992). Convection Cells in vibrating granular media. [22] S. Luding, E. Clement, A. Blumen, J. Rajchenbach, and J. Duran, Phys. Rev. E, Vol. 50, R1762(1994). Onset of convection in molecular dynamics simulations of grains. [23] E.E. Ehrichs, J.K. Flint, H.M. Jaeger, J.B. Knight, S.R. Nagel, G.S. Karczmar, and V.Y. Kuperman, Phil. Trans. R. Soc. Lond. A 356, 2561(1998). Convection in vertically vibrated granular materials. [24] J.B. Knight, Phys. Rev. E, Vol.55, 6016(1997). External boundaries and internal shear bands in granular convection. [25] B. Painter and R.P. Behringer, Phys. Rev. Lett. Vol.85, 3396(2000). Substrate Interactions, Effects of Symmetry Breaking, and Convection in a 2D Horizontally Shaken Granular System. [26] F.Rietz and Ralf Stannarius, Phys. Rev. Lett., Vol.100, 078002(2008). On the Brink of Jamming: Granular Convection in Densely Filled Containers. [27] J.S. Olafsen and J.S. Urbach, Phys. Rev. Lett. Vol.81, 4369(1998). Clustering, Order, and Collapse in a Driven Granular Monolayer. [28] P.V. Quinn and D.C Hong, Phys. Rev. E, Vol.62, 8295(2000). Liquid-solid transition of hard spheres under gravity. [29] P.M. Reis, R.A. Ingale, and M.D. Shattuck, Phys. Rev. Lett. Vol.96, 258001(2006). Crytallization of a Quasi-Two-Dimensional Granular Fluid. [30] P.M. Reis, R.A. Ingale, and M.D. Shattuck, Phys. Rev. Lett. Vol.98, 188301(2007). Caging Dynamics in a Granular Fluid. [31] Kiwing To, Pik-Yin. Lai and H.K. Pak, Phys. Rev. Lett. 86, 71 (2001). Jamming of granular flow in a two-dimensional hopper. [32] A. Rosato, Katherine J. Strandburg, Friedrich Prinz, and Robert H. Swenden, Phys. Rev. Lett. 58, 1038 (1987). Why the Brazil Nuts Are on Tops: Size segregation of particulate Matter by Shaking. [33] R. Jullien and P. Meakin, Phys. Rev. Lett. 69, 640 (1992). Three-Dimension model for particle-size segregation by shaking. [34] J.Duran,J.Rajchenbach,and E.Clement, Phys. Rev. Lett. Vol.70, 2431(1993). Arching Effect Model for Particle Size Segregation. [35] J. B. Knight, H. M. Jaeger, and S. R. Nagel, Phys. Rev. Lett. 70, 3728(1993) Vibration-Induced sized separation in granular media : The convection connection. [36] J. Duran, T. Mazozi, E. Clement, and J. Rajchenbach, Phys. Rev. E, Vol. 50, 5138(1994). Size segregation in a two-dimensional sbadpile: Convection and arching effects. [37] W. cooke, S. Warr, J.M. Huntley, and R.C. Ball, Phys. Rev. E, Vol. 53, 2812(1996). Particle size segregation in two-dimensional bed undergoing vertical vibration,. [38] L.Vanel, A.D. Rosato, and R.N. Dave, Phys. Rev. Lett., Vol. 78, 1255(1997). Rise-Time Regimes a Large Sphere in Vibrated Bulk Solids. [39] T. Shinbrot and F.J. Muzzio, Phys. Rev. Lett, Vol. 81, 4365(1998). Reverse Buoyancy in Shaken Granular Beds. [40] M.E. Mobius, B.E. Lauderdale, S.R. Nagel, and H.M. Jaeger, Nature, Vol. 414, 270(2001). Size separation of granular particles. [41] D. C. Hong and P. V. Quinn, Phys. Rev. Lett. 86, 3423 (2001). Reverse Brazil Nut Problem: Competition between percolation and condensation. [42] K. Liffman, K. Muniandy, M. Rhodes, D. Gutteridge, and G. Metcalfe, Granular Matter 3, 205(2001). A segregation mechanism in a vertically shaken bed. [43] Y. Nahmad-Molinari, G. Canul-Chay and J.C. Ruiz-Suarez, Phys. Rev. E, vol.68, 041301(2003). Inertia in the Brazil Nut Problem. [44] A.P.J. Breu, H.M. Ensner, C.A. Kruelle, and I. Rehberg, Phys. Rev. Lett. Vol. 90, 014302(2003). Reversing the Brazil-Nut Effect: Competition between Percolation and Condensation. [45] P.M. Reis, T. Sykes, and T. Mullin, Phys. Rev. E, vol.74, 051306(2006). Phases of granular segregation in a binary mixture. [46] M. P. Ciamarra, M. D. De Vizia, A. Fierro, M. Tarzia, A. Coniglio, and M. Nicodemi. Phys. Rev. Lett. 96, 058001 (2006). Granular Species Segregation under Vertical Tapping: Effects of Size, Density, Friction, and Shaking Amplitude. [47] M.Schroter, S. Ulrich, J. Kreft, J.B. Swift, and L. Swinney, Phys. Rev. Lett. Vol. 74, 011307(2006). Mechanisms in the size segregation of a binary granular mixture. [48] S.S.Hsiau and M.L. Hunt, Acta Mech. 114,121(1996). Kinetic Theory Analysis of Flow- Induced Particle Diffusion and Thermal Conduction in Granular. [49] J.V. Galvin, S.R. Dahl, and C.M. Hrenya, J. Fluid Mech. 528, 107(2005). [50] J.J. Brey, M.J. Ruiz-Montero, and F. Monreno, Phys. Rev. Lett. Vol. 95, 098001(2005). Energy Partition and Segregation for an Intruder in a Vibrated Granular System under Gravity. [51] L. Trujillo, M. Alam, and H. J. Hermman, Europhys. Lett. 64 (2), 190 (2003). Segregation in a fluidized binary granular mixture: Competition between buoyancy and geometric forces. [52] N. Burtally, P.J. King, and M.R. Swift, Science 295, 1877(2002). Spontaneous Air-Driven Separation in Vertically Vibrated Fine Granular Mixtures. [53] X. Yan, Q. Shi, M. Hou, K. Lu, and C.K. Chan, Phys. Rev. Lett. Vol. 91, 014302(2003). Effects of Air on the Segregation of Particles in a Shaken Granular Bed. [54] T. Schnautz, R. Brito, C. A. Kruelle, and I. Rehberg, Phys. Rev. Lett. 95, 028001 (2005). A Horizontal Brazil-Nut Effect and Its Reverse. [55] P.M. Reis and T. Mullin, Phys. Rev. Lett. Vol. 89, 244301(2002). Granular Segregation as a Critical Phenomenon. [56] S. Aumaitre, T. Schnautz, C.A. Kruelle, and I. Rehberg, Phys. Rev. Lett. Vol. 90, 114302(2003). Granular Phase Transition as a Precondition for Segregation. [57] M.P. Ciamarra, A. Coniglio, and M. Nicodemi, Phys. Rev. Lett. Vol. 94, 188001(2005). Shear Instabilities in Granular Mixtures. [58] P.M. Reis, T. Sykes, and T. Mullin, Phys. Rev. E, Vol. 74, 051306(2006). Phases of granular segregation in a binary mixture. [59] L. Kondic, Phys. Rev. E 60, 751, (1999). Dynamics of spherical particles on a surface: Collision-induced sliding and other effects. [60] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, UK (1987). [61] O. R. Walton and R. L. Braun, Acta Mech. 63, 73, (1986). Stress calculation for assemblies of elastic sphere in uniform shear. [62] P. A. Cundall and O. D. L. Strack, Geotechique 29, 47, (1979). A discrete numerical model for granular assemblies. [63] S. Luding and S. McNamara, Granular Matter 1, 113(1998). How to handle inelastic collapse of a dissipative hard-sphere gas with the TC model. [64] S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J. Duran, Phys. Rev. E 49, 1634 (1994). Studies of columns of beads under external vibrations . [65] S. McNamara and W. R. Young, Phys. Rev. E 50, R28 (1994). Inelastic collapse in two dimension. [66] D. Goldman, M. D. Shattuck, C. Bizon, W. D. McCormick, J. B. Swift, and H. L. Swinney, Phys. Rev. E 57, 4831 (1998). Absence of inelastic collapse in a realistic three ball model . [67] S. Luding, H. J. Herrmann, and A. Blumen, Phys. Rev. E 50, 3100 (1994). Scaling Behavior of 2-Dimensional Arrays of Beads under external Vibrations . [68] S. McNamara and W. R. Young, Phys. Rev. E 53, (1996). Dynamics of freely evolving, two-dimensional granular medium. [69] P. K. Haff, J. Fluid Mech. Vol. 134, 401, (1983). Grain flow as a fluid-mechanical. [70] S. Luding, M. Huthmann, S. McNamara, and A. Zippelius, Phys. Rev. E 58, 3416 (1998). Homogeneous cooling of rough, dissipative particles: Theory and simulation. [71] T. P. C. van Noije and M. H. Ernst, Granular Gas, Springer-Verlag, Berlin, p.3 (2001). Kinetic theory and Hydrodynamics. [72] T. Aspelmeier, M. Huthmann, and A. Zippelius, Granular Gas, Springer-Verlag, Berlin, p.31(2001). Free Cooling of Particles with Rotational Degree of freedom. [73] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993). Clustering instability in dissipative gases. [74] M. Scherer, V. Buchholtz, T. Poschel, and I. Rehberg, Phys. Rev. E 54, R4560(1996). Swirling granular matter : From rotation to reptation. [75] Richard L. Liboff, JohnWiley & Sons, Inc. (1998). Kinetic Theory—Classical, Quantum, and Relativistic Descriptions, 2nd ed.. [76] F.F. Chung, S.S. Liaw, and J.Y. Chu, Granular Matter,(2008). Brazil nut effect in a rectangular plate under horizontal vibration. [77] F.F. Chung, J.Y. Chu, and S.S. Liaw, Phys. Rev. E 77, 061304(2008). Spiral trajectory in the horizontal Brazil nut effect. [78] F.F. Chung, R.T. Liu, and S.S. Liaw, J.Korean Phys. Soc., Vol.50, 224(2007). Horizontal Size Segregation in Granular Matter. [79] M.P. Allen and D.J. Tildesley. Computer simulation of liquids.Oxford: Clarendon Press(1987).
摘要: This report discusses the behavior of the intruded particles in a group of background particles which are agitated by external force. The intruded particles population is minority and have larger size than the background particles and also different in mass. The main researches for the last 30 years mostly focused on systems in which the vibrated direction is parallel to gravitational field. Some reports found the so called Brazil Nut Effect(BNE) [32] that the larger particles always accumulate on the top layer after agitation.And also the larger particles may sink to bottom (Reverse BNE) [41] if the size ratio and mass ratio are selected appropriately. By the Molecular dynamics (MD) simulation, this report found the similar phenomenon of BNE in the 2 dimensional granular systems in the absence from gravitational field. The intruder in the system migrates either to the center or the edge of the cluster of the background particles. Since this system has negligible influence by gravity and the interstitial fluid, it may be an easier and important way to understand the mechanisms of particles segregation. Furthermore, it can be approximately realized by horizontal shaken experiment in gravitational field. With the aids of simulation and experiment, this report suggests a mechanism for migration of an intruder in the shaking granular bed. The mechanism suggests that the migration of the intruder is due to the competition between the collision frequency and the inertia of the intruder. Since the collision frequency and the inertia is proportional to the size and the mass respectively, that explain why the size ratio and mass ratio become the main control parameters in particles migration. This mechanism also explains well the results in the system shaken in two dimensions.
本文探討在受振動的顆粒群中植入少數尺寸較大的相異顆粒後,這些相異顆粒的行為。過去的研究大部分是把重點擺在垂直振動的系統,即有重力影響的系統。這些研究發現,混合顆粒中體積較大的會聚集在上層。一般稱這種現象作巴西堅果效應(Brazil Nut Effect, BNE)[32]。若適當選擇混合顆粒的質量比與半徑比,也能使較大的顆粒聚集在下層,稱為反巴西堅果效應(Reverse Brazil Nut Effect, RBNE)[41]。 利用分子動力學模擬,本文發現二維顆粒系統受到與重力方向垂直的簡諧振動時,被植入的相異顆粒也會因其大小,質量的不同而有類似BNE和RBNE的兩種傾向 。一是往背景顆粒群的質心靠攏,二是被排擠在背景顆粒群之外。由於這個系統的重力及其它間隙流體的複雜影響可以忽略,因此本文認為理解這類系統的現象對理解一般混合顆粒的分離機制會有很大的幫助。 通過模擬及實驗的佐證,本文認為相異顆粒的傾向不同是由於顆粒之間碰撞頻率及慣性的差異性所造成的。而引發的傾向則決定於因振動引起顆粒分布的不對稱性有關。一個顆粒的碰撞頻率越大,運動狀態的改變越劇烈,而顆粒的質量越大則可以抵抗運動狀態的變化。本文稱這種因運動狀態改變的多寡造成的顆粒分離現象為慣性分離效應。這種效應也成功解釋了二維顆粒系統在無重力下受二維振動時,被植入相異顆粒的分離現象。
其他識別: U0005-0701200912081000
Appears in Collections:物理學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.