Please use this identifier to cite or link to this item:
標題: CMOS-MEMS微機械式帶通濾波器
CMOS-MEMS Micromechanical Bandpass Filters
作者: 馬為頎
Ma, Wei-Chi
bandpass filter
出版社: 機械工程學系所
引用: [1] 顧馨文,MEMS在消費性電子的趨勢探討,資訊產業策進會MIC,2010. [2] “MEMS Market Outlook: Yole Développement ups its forecast on current market strength”, i-micronews, 2011. [3] [4] 江銘昭,高頻微機械式帶通濾波器,國立中興大學機械工程研究所碩士論文,2007. [5] H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis Jr., “The Resonant Gate Transistor,” IEEE Trabs. on Electorn Devices, Vol. 14, pp. 117-133, 1967. [6] W. Riethmuller and W. Benecke, “Thermally Excited Silicon Microactuators,” IEEE Transaction on Electorn Devices, Vol. 35, NO. 6, pp. 758-763, 1988. [7] D. Joachim, and L. Lin “Selective Polysilicon Deposition For Frequency Tuning Of MEMS Resonators”, Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on, pp. 727-730, 2002. [8] G. K. Ho, R. Abdolvand, and F. Ayazi, “Through-Support-Coupled Micromechanical Filter Array,” Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on. pp. 769-772, 2004. [9] R. Kamalian, Y. Zhang, and A. M. Agogino, “Microfabrication And Characterization Of Evolutionary MEMS Resonators,” Micro-NanoMechatronics and Human Science, pp. 109-114, 2005. [10] J. F. Gong, Z.Y. Xiao, and P. C. H. Chan, “Integration Of An RF MEMS Resonator With A Bulk CMOS Process Using A Low-Temperature And Dry-Release Fabrication Method,” Journal of Micromechanics and Microengineering, Vol. 17, NO. 1, pp. 20-25, 2006. [11] M. Motiee, R.R. Mansour, and A. Khajepour, “Novel MEMS Filters For On-Chip Transceiver Architecture, Modeling and Experiments,” Journal of Micromechanics and Microengineering, Vol. 16, NO. 2, pp. 407-418, 2006. [12] N. Arellano, E. P. Quevy, J. Provine, R. Maboudian, and R. T. Howe, “Silicon Nanowire Coupled Micro-Resonators,” MEMS 2008. IEEE 21st International Conference on, pp. 721-724, 2008. [13] G. Piazza, P. J. Stephanou, and A. P. Pisano, “Aluminum Nitride Contour-Mode Vibrating RF MEMS,” Microwave Symposium Digest, 2006. IEEE MTT-S International, pp. 664-667, 2006. [14] J. Yan, A. A. Seshia, K. L. Phan, and J. T.M. van Beek, “Internal Electrical And Mechanical Phase Inversion For Coupled Resonator-Array MEMS Filters,” Sensors And Actuator A: Physical, Vol. 158, pp. 18-29, 2009. [15] M. M. Shalaby, and M. A. Abdelmoneum, “Design of Spring Coupling for High-Q High-Frequency MEMS Filters for Wireless Applications,” IEEE Transactions On Industrial Electronics, Vol. 56, NO. 4, pp. 1022-1030, 2009. [16] I. H. Song, Y. A. Peter, and M. Meunier, “Resonant Frequency Sensitive MEMS Bandpass Filter Using Capacitive Sensing Scheme,” Microsystem Technologies, Vol. 15, NO. 7, pp. 973-979, 2009. [17] C. L. Dai, C. H. Kuo, and M. C. Chiang, “Microelectromechanical resonator manufactured using CMOS-MEMS technique,” Microelectron. J., Vol. 38, pp. 67-677, 2007. [18] 王栢村,振動學,全華圖書股份有限公司,中華民國,台北市,2007. [19] D. S. Steinberg, “Vibration Analysis For Electronic Equipment,” A Wiley Inter & Science Publication, New York, USA, 1973. [20] S. S. Rao, “Mechanical Vibration,” Addison Wesley, New York, USA, 2002. [21] William F. Riley, “Mechanics Of Materials,” John Wiley & Son, Inc. New York, USA, 1999. [22] G.M. Bebeiz, “RF MEMS Theory, Design, and Technology,” John Wiley & Sons, Inc. New York, USA, 2003. [23] 林地財,通訊濾波器-原理與電腦輔助設計,全華圖書股份有限公司,中華民國,台北市,1996. [24] 伍秀菁等編,微機電系統技術與應用,國家實驗研究院儀器科技研究中心,中華民國,新竹市, 2003. [25] 白明憲,聲學理論與應用-主動式噪音控制,全華圖書股份有限公司,中華民國,台北市,2001. [26] 莊達人,VLSI製造技術,高立圖書有限公司,中華民國,台北縣, 2003.
摘要: 本研究利用TSMC 0.35μm (2P4M) CMOS-MEMS標準製程技術,以及自備無光罩濕蝕刻後製程技術,設計一具懸浮結構之微機械式帶通濾波器。此微機械式濾波器是利用共振器系統中的「輸入訊號頻率僅在到達共振點時會產生大量訊號」之特點來構成,並整合多階共振系統,且設計使各階共振點相互接近,以達到帶通濾波器之效能。此微機械式濾波器之結構採用微機械式濾波器兩大系統中的平板式結構,以增加驅動面積以及感測面積。本設計主要分為結構區、驅動端以及感測端,材料皆為金屬鋁,另以二氧化矽做為層別間之犧牲層以及結構與基材間之隔絕層;驅動端是靜電力作為驅動力,此靜電力由輸入電壓所產生,當輸入電壓為交流電壓,使結構以出平面方式作往復運動,進而產生共振現象。感測端方面,訊號讀取是利用平行板電容,感測因共振而產生的電容變化,最後透過外接放大電路將電容訊號轉為電壓訊號並將訊號放大。Matlab計算,以18 V驅動電壓為條件下,中央頻率約為4.19 MHz,頻寬(BW)為312 kHz;經ANSYS軟體模擬後共振頻率為3.686MH、3.807MHz、4.005 MHz,頻寬(BW)為309 kHz。實驗結果,吸附電壓為18V,驅動電壓設定為15V,中央頻率為4.362MHz,頻寬為337 kHz。
This study develops a micromechanical bandpass filter using the standard CMOS (complementary metal oxide semiconductor) process and a wet etching with maskless post-process. This micromechanical filter is multi-order resonance system that includes a structure part, a driving part and a sensing part. The material of the filter is aluminum. Silicon oxide is use as the sacrificial layer. In order to obtain the suspended structures of the filter, a post-process is adopted to remove the sacrificial layer. In the driving part, the electrostatic force is used to actuate the filter. When applying an ac voltage, the parallel-plate of the filter produces out-of-motion. The sensing part generates a change in capacitor due to the motion of parallel-plate, and an external circuit is utilized to convert the capacitor variation into the output voltage. The simulation results showed that the natural frequency of the filter was 4.005 MHz, and the band-width is 309 kHz. The pull-in voltage of the micromechanical filter is 18V. Experimental results revealed that the center frequency of the filter was 4.362 MHz, and the band-width was 337 kHz.
其他識別: U0005-2508201114260800
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.