Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17109
標題: Fabrication and characteristics of low-Tc Nb nanoSQUID by Focused ion Beam
利用聚焦離子束製作鈮薄膜奈米超導量子干涉元件之特性研究
作者: Yao, Hung-Yi
姚宏毅
關鍵字: nanoSQUID
奈米量子干涉元件
RSJ-model
FIB
Nb film
電阻分路模型
聚焦離子束
鈮薄膜
出版社: 物理學系所
引用: [1]S.H. Hiao,S.C. Hsu,C.C. Lin,H.E. Horng,J.C. Chen, M.J. Chen,C.H. Wu,and H.C.Yang, Supercon. Sci. Technol .16, 1426 (2004). [2]S. Kuriki,A. Hayashi,T. Washio,M. Fujita, Rev. Sci. Instrum. 73, 440 (2002). [3] S. Tanaka,H. Ota,Y. Kondo,Y. Tamaki,Noguchi,M. Hasegawa, Physica C 368, 32 (2002);S. Tanaka,A. Hirata,Y. Saito, T. Mizoguchi,Y. Tamaki,I. Sakita,M. Monden, IEEE Tran.Appl. Supercon., 11, 665 (2001). [4] J.T. Jeng and H.E. Horng,and H.C. Yang, Physica C 368, 105 (2002). [5]S. Tanaka,O. Yamazaki,R. Shimizu,Y. Saito,Supercon. Sci. Technol. 12, 809 (1999). [6]Rugar D, Budakian R, Mamin H J and Chui B W 2004 Nature 430 329. [7]Tonomura A,Matsuda T, Endo J, Arii T and Mihama K 1986 Phys. Rev. B 34 3397. [8]Bardau N Bartenlian B, Chappert C, Megy R, Veillet P, Rousseaux F, Ravet M F, Jamet J P and Meyer P 1996 J. Appl. Phys. 79 5848. [9]Chang T and Chu J G 1994 J. Appl. Phys. 75 5553. [10]LedermannM, Schultz S and Ozaki M 1994 Phys. Rev. Lett. 73 1986. [11]Raufast C, Tamion A, Bernstein E, Depuis V, Tournier T, Crozes T, Bonet E and Wernsdorfer W 2008 IEEE Trans. Magn. 44 2812-5. [12]C Granata, E Esposito, A Vettoliere, L Petti and M Russo 2008 Nanotechnology 19 275501. [13]L Hao, D C Cox and J C Gallop 2009 Supercond.Sci. Technol.22 064011. [14]C. Granata,A. Vettoliere,R. Russo,E. Esposito,M. Russo, and B. Ruggiero 2009 J.Appl. Phys. 94 062503. [15]Clarke J and Braginski A(ed)2004 The SQUID Handbook Fundamentals and Technology of SQUIDs and SQUID Systems vol 1. [16]K. Enpuku,Y. Shimomura,and T. Kisu,1993 J. Appl. Phy. 73 7929. [17]Ketchen M B, Kopley T and Ling H 1984 Appl. Phys. Lett 44 1008-10. [18]Ketchen M B, Awschalom D D, Gallagher W J, Kleinsasser A W, Sandstrom R L, Rozen J R and Bumble B 1989 IEEE Trans. Magn. 25 1212-5. [19]David L Tilbrook 2009 Supercond. Sci. Technol. 22 064003. [20]Hao L, Macfarlane J C, Gallop J C, Cox D, Beyer J, Drung D and Schurig T 2008 Appl. Phys. Lett 92 192507. [21]V Bouchiat 2009 Supercond. Sci. Technol. 22 064013. [22]鐘文生,國立彰化師範大學物理學研究所碩士論文(2003)
摘要: From existing literature, we understand that the nano Superconducting Quantum Interference Device (nanoSQUID) has the ability to detect tens or hundreds of electron spin. In addition, it has a high capacity for nano-particle coupling as well as an extremely high sensitivity to detect flux. This study analyzes the characteristics of the nanoSQUID, uses the Focused ion Beam (FIB) system to create nanoSQUIDs ranging in size and in thickness of the niobium(Nb) thin film, and examines the physical properties of nanoSQUIDs. We coated a substrate with Nb thin film; then using photo lithography, direct milling and a Focused ion Beam, we created the nanoSQUID. Using an etching material, we created weak links of various sizes, and thereby formed the electronic tunneling feature of the Josephson interface. From the R-T curves of samples that have undergone etching, we saw decreases in the critical temperature (Tc), and observed temperatures above the Tc to exhibit higher resistance than that of nano-bridges that have not been etched. Furthermore, the I-V curves corresponded with the resistive shunted junction(RSJ)-Model. When we varied the temperature conditions, we discovered that the critical current (Ic) decreased with the increase in temperature, causing the superconductivity of the samples to be disrupted. Finally, we found that adding parallel magnetic fields led to the disruption of the nanoSQUID's superconductivity, causing it to become a metal.
從文獻中我們瞭解到nanoSQUID是有能力偵測到數十或是數百個電子自旋的能力,而且對於奈米粒子耦合的程度很高,並且量測到的磁通會有很高的靈敏度,所以本篇論文主要是探討並分析nanoSQUID的性質與特性以及使用聚焦離子束系統來製作不同逼近尺度以及不同深度鈮薄膜的nanoSQUID並量測其物理性質。 我們在矽基板上鍍上鈮薄膜,再以微影製程、乾蝕刻製程、以及聚焦離子束製程製作nanoSQUID,用破壞材料逼近的方式來達成弱連結,則會形成電子穿隧的約瑟芬介面。經過破壞後的樣品從電阻-溫度(R-T)圖發現鄰界溫度有減小的情形,並且發現在臨界溫度之上的電阻會比未被破壞的微橋電阻還要大,之後再經由電壓-電流(I-V)量測曲線可以發現電阻分路模型(RSJ-Model)的行為,當我們變更量測溫度時會發現臨界電流會隨著溫度升高而降低,使得樣品的超導特性被破壞,之後外加平行磁場即發現超導態被破壞而形成金屬態。
URI: http://hdl.handle.net/11455/17109
其他識別: U0005-0201201021113900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0201201021113900
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.