Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17129
標題: 具有長程有序特性奈米線的製造及其物理性質的研究
The synthesis and characterization of nanowires with long range ordering
作者: Lai, Shang-Hung
賴尚宏
關鍵字: 超導
Superconductivity
磁性
奈米線
溶液凝膠法
陽極氧化鋁
龐磁阻
有限尺度理論
相關長度
一維易形模型
Magnetism
Nanowire
Sol-gel
Anodic aluminum oxide
Colossal magnetoresistance
Finite-size scaling theory
Correlation length
One-dimensional Ising model
出版社: 物理學系所
引用: [1] R. P. Feynman, Caltech's Engineering and Science (1960). [2] S. Iijima, Nature (London). 354 56 (1991). [3] P. Weiss, J. Phys. 6 661 (1907). [4] P. Langevin, Annales de Chemie st de Physique 5 70 (1905). [5] J. M. Ziman, Principle of the theory of solids Cambridge 2nd ed.(1972). [6] N. F. Mott. and H. Jones, Theory of the properties of metals and alloys Oxford (1936). [7] R. Micnas, J. Ranninger, S. Robaszkiewicz. Rev. Mod. Phys. 62 113 (1990). [8] M. D. Lan, P.L. Tasi, Y.L. Chang, J.J. Cheng, Solid state commun. 121 575 (2002). [9] S. Ullah, A. T. Dorsey, Phys. Rev. B 44 262 (1991). [10] S. Ullah, A. T. Dorsey, Phys. Rev. Lett. 65 2066 (1990). [11] D. W. Hone and P. M. Richard, One- and two dimensional magnetic systems, Annual Rev. Material Sci., 4 337-63 (1974). [12] R. J. Birgeneau and G. Shirane, Magnetism in one dimension, Phys. Today, December 32-43 (1978). [13] L. J. de Jongh and A. R. Miedema, Experiments on simple magnetic model systems, Advan. Phys. 23 1-260 (1974). [14] M. E. Jones and R. E. Marsh, J. Am. Chem. Soc. 76 1434 (1954). [15] Nagamatsu J, Nakagawa N, Murakana Y Z and Akimitsu J, Nature 410 63 (2001). [16] Grant P, Nature 411 532 (2001). [17] Kortus J, Mazin I I, Belashchenko K D, Antropov V P and Boyer L L, Phys. Rev. Lett. 86 4656 (2001). [18] M. H. Badr and K-W Ng, Supercond. Sci. Technol. 16 668 (2003). [19] W. N. Kang, H. J. Kim, E. M. Choi, C. U. Jung, S. I. Lee, Science 292 1521 (2001). [20] C. B. Eom, M. K. Lee, J. H. Choi and L. J. Belenky, Nature. 411 558 (2001). [21] S. Jin, H. Mavoori, C. Bower and R. B. van Dover, Nature. 411 563 (2001). [22] P. C. Canfield, D. F. Finnermore, S. L. Bud'ko, J. E. Ostenson, G. Lapertot, C. E. Cunningham, C. Petrovic, Phys. Rev. Lett, 86 2423 (2001). [23] S. Iijima, Nature (London). 354 56 (1991). [24] A. Gumbel, J. Eckert, G. Fuchsm, K. Nenkov, K.-H. Muller, L. Schultz, Appl. Phys. Lett. 80 2725 (2002). [25] S. Li, T. White, C. Q. Sun, Y. Q. Fu, J. Plevert, K. Lauren, J. Phys. Chem. B 108 16415 (2004). [26] Y. Wu, B. Messer, P. Yang, Adv. Mater. 13 1487 (2001). [27] Q. Yang, J. Sha, X. Ma, Y. Ji, D. Yang, Supercond. Sci. Technol. 17 L31 (2004). [28] L. Cao, Z. Zang, H. Wen, W. Wang, Appl. Phys. Lett. 86 123113 (2005). [29] R. Ma, Y. Bando, T. Mori, D. Golberg, Chem. Mater. 15 3194 (2003). [30] M. Nath, B. A. Parkinson, Adv. Mater. 18 1865 (2006). [31] J. G. Bednorz and K. A. Muller, Z. Phys. B 64 189 (1988). [32] M. K. Wu et al. Phys. Rev. Lett. 58 908 (1987). [33] C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandrs, J. Provost, and B. Raveau, Z. Phys. B 68 421 (1987). [34] H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys. 27 L209 (1988). [35] L. F. Mattheiss (unpulished). [36] S. A. Sunshine et al., Phys. Rev. B 38 893 (1988). [37] Y. F. Zhang, Y. H. Tang, X. F. Duan, Y. Zhang, C. S. Lee, N. Wang, I. Bello, S. T. Lee, Chem. Phys. Lett. 323 180 (2000). [38] Xu Jian, Liu Xiaohe, Li Yadong, Mater. Chem. Phys. 86 409 (2004). [39] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994). [40] R. von Helmolt, J. Wecker, B. holzapfel, L. Schultz, and Samwer, Phy. Rev. Lett. 71, 2331 (1993). [41] P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phy. Rev. Lett. 75, 3336 (1995). [42] A. Urushibara et al, Phys. Rev. B 51 14103 (1995). [43] P. M. Levy, Solid State Phys. 47 367 (1994). [44] P. M. Levy and S. Zhang, J. Mag. Mag. Mater. 151 315 (1995). [45] J. B. Goodenough, Phys. Rev. 100 564 (1955). [46] C. Zener, Phys. Rev. 82 403 (1951). [47] Xiangyang Ma, Hui Zhang, Jin Xu, Junjie Niu, Qin Yang, Jian Sha, Deren Yang, Chem. Phys. Lett. 363 579 (2002). [48] Wagner R. S., Ellis W. C., Appl. Phys. Lett. 4 (5) 89 (1964). [49] Lu. Yicheng, Zhong. Jian, Norwood, MA: Artech House, Inc.. pp. p.191-192. [50] M. Haupt, A. Ladenburger, R. Sauer, K. Thonke, R. Glass, W. Roos, J. P. Spatz, H. Rauscher, S. Riethmuller and M. Moller, J. Appl. Phys. 93 6252 (2003). [51] M. K. Sunkara, S. Sharma, R. Miranda, G. Lian and E. C. Dickey, Appl. phys. Lett. 79 1546 (2001). [52] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui and H. Ruda, J. Vac. Sci Technol. B 15 554 (1997). [53] V. Schmidt, S. Senz, U. Gosele, Appl. phys. A 80 445 (2005). [54] J. S. Rowlinson, B. Widom, Molecular Theory of Capillarity Dover, Mineola, NY (2002). [55] B. A. Pethica, Rep. Prog. Appl. Chem. 46 14 (1961). [56] B. Widom, J. Phys. Chem. 99 2803 (1995). [57] Hui Zhang, Xiangyang Ma, Jin Xu, Junjie Niu and Deren Yang, Nanotechnology 14 423 (2003). [58] Xudong Wang, Christopher J. Summers and Zhong Lin Wang, Nano lett. 4 423 (2004). [59] S. H. Jo, J. Y. Lao and Z. F. Ren, R. A. farrer, T. Baldacchini, and J. T. Fourkas, Appl. Phys. Lett. 83 4821 (2003). [60] Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, J. Crystal growth 247 357 (2003). [61] Seu Yi Li, Pang Lin, Chia ying Lee and Tseung Yuen Tseng, 95 3711 (2004). [62] Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, and D. R. M. Walton, J. Mater. Chem, 8 1859 (1998). [63] H. Takikawa, M. Yatsuki, and T. Sakakibara, Japan J. Appl. Phys. 38 L401 (1999). [64] C. H. Liang, L. D. Zhang, G. W. Meng, Y. W. Wang, and Z. Q. Chu, J. Noncryst. Solids 277 63 (2000). [65] X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 328 5 (2000). [66] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12 746 (2000). [67] W. Q. Han, P. Kohler-Redlich, F. Ernstt, and M. Ruhle Solid State Comm. 115 527 (2000). [68] S. wernick, R. Pinner, and P. G. Sheaby, Anodization of aluminum: General notes and theory, Chapter 6 in “The Surface Treatment Finishing of Aluminum and Its Alloys” 2nd ed., Vol. I. Finishing Publications, Ltd., Middlesex, UK (1987). [69] G. D. Bengough and J. M. Stuart, UK patent 23 994 (1923). [70] J. W. Diggle, T. C. Downie, and C. W. Goulding, Chem. Rev. 69 365 (1969). [71] M. Moskovits and B. Schmid-Halter, International Patent Wo88/02538 (1988). [72] C. R. Martin, Science 266 1961 (1994). [73] D. Routkevich, A. A. Tager, J. Haruyama, D. AlMawlawi, M. Moskovits,and J. M. Xu, IEEE Trans. Electron Devices 43 1646 (1996). [74] F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100 411 (1953). [75] J. P. O'Sullivan and G. C. Wood, Trans. Inst. Met. Finish. 63 98 (1985). [76] O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett. 72 1173 (1998). [77] H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, J. Electrochem. Soc. 148 B152 (2001). [78] S. Shingubara, O. Okino, Y. Sakayama, H. Sakaue, and T. Takahagi, Japan J. Appl. Phys. 36 7791 (1997). [79] F. Li, Ph.D. Thesis, University of Alabama, Huntsville (1998). [80] S. Bandyopashyay, A. E. Miller, H- C Chang, G. Banerjee, V. Tuzhakov, D. -F. Yue, R. E. Ricker, S. Jones, J. A. Eastman, E. Baugher, and M. Chandrasekhar, Nanotechnology 7 360 (1996). [81] J. P. O'Sullivan and G. C. Wood, Proc. Roy. Soc. London Ser. A 317 511 (1970) [82] K. Ebihara, H. Takahashi, and M. Nagayama, J. Met. Finish. Soc. Japan 34 548 (1983). [83] D. AlMawlawi, N. Coombs, and M. Moskovits, J. Appl. Phys. 70 4421 (1991). [84] C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis, and C. B. Prater, Science 263 800 (1994). [85] C. A. Huber and T. E. Huber, J. Appl. Phys. 64 6588 (1988). [86] A. J. Yin, J. Li, A. J. Bennett, and J. M. Xu, Appl. Phys. Lett. 79 1039 (2001). [87] L. Menon, M. Zheng, H. Zeng, S. Bandyopadhyay, D. J. Sellmyer, J. Electro. Mater. 29,510 (2000). [88] M. Zheng, L. Menon, H. Zeng, S. Bandyopadhyay, and D. J. Sellmyer, J. Electron. Mater. 29 510 (2000). [89] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S. F. Fischer, and H. Kronmuller, Appl. Phys. Lett. 79 1360 (2001). [90] R. Ferre, K. Ounadjela, and J. M. George, Phys. Rev. B 56 14066 (1997). [91] L. C. -Zhang and J. C. lodder, J. Magn. Magn. Mater. 88 236 (1990). [92] C. J. Brinker and G. W. Scherer, “Sol-gel science: The physics and chemistry of sol-gel processing” Academic Press: London (1990). [93] D. J. Shaw, Butterworth, “Colloids and Surface Chemistry” 4th ed., (1992). [94] John D. Wright, Nico A.J. M. Sommerdijk, Sol-Gel Materials: Chemistry and Applications. Taylor & Francis Books Ltd. P.56 (2001). [95] C. R. Martin, Science 266 1961 (1994). [96] I.R. Fisher, J.R. Cooper, P.C. Canfield, Phys. Rev. B 56 10820 (1997). [97] I.R. Fisher, J.R. Cooper, Phys. Rev. B 52 15089 (1995). [98] H. Eisaki, H. Takagi, R.J. Cava, B. Batlogg, J.J. Krajewski, W.F. Peck,Jr., K. mizuhashi, J.O. Lee, S. Uchida, Phys. Rev. B 50 647 (1994). [99] H. Takeya, K. Kadowaki, Phys. Rev. B 54 3062 (1996). [100] B. D. Hennings, D. G. Naugle, P.C. Canfield, Phys. Rev. B 66 214512-1 (2002). [101] S.V. Shulga, S.L. Drechsler, G. Fuchs, KH. Muller, L.Winzer, M. Heinecke, K. Krug. Phys. Rev. Lett. 80 1730 (1998). [102] M.D. Lan, J.Z. Liu, Y.X. Jia, Lu Zhang, Y. Nagata, P. Klavins, R.N. Shelton. Phys. Rev. B 47 457 (1993). [103] Y.X. Jia, J. Z. Liu, M. D. Lan, P. Klavins, R. N. Shelton, Phys. Rev. B 45 10609 (1992). [104] U. Welp, S. Fleshler, W.K. Kwok, R.A. Klemm, V.M. Vinokur, J. Downey, B. Veal, G.W. Crabtree, Phys. Rev. Lett. 67 3180 (1991). [105] R. F. Klie, J. C. Idrobo, and N. D. Mueller, Appl. Phys. Lett. 80 3970 (2002). [106] C.P. Bean, Phys.Rev. Lett. 8 250 (1962). [107] M. R. Beasley, R. Labusch, W. W. Webb, Phys. Rev. 181 682 (1969). [108] M. K. B. Day and V. J. Hill, J. Phys. Chem. 7 946 (1953). [109] B. C. Lip pens and J. H. de Boer, Acta. Cryst. 17 1312 (1964). [110] S. Rajendran, J. Mater. Sci 29 5664 (1994). [111] Michael E. Fisher, Michael N. Barber, Phys. Rev. Lett. 28 1516 (1972). [112] T. Ambrose, C. L. Chien, J. Appl. Phys. 79 5920 (1996). [113] T. Ambrose, C. L. Chien, Phys. Rev. Lett. 76 1743 (1996). [114] L. Sun, P.C. Searson, C. L. Chien, Phys. Rev. B. 61 6463 (2000).
摘要: Superconductivity and magnetism are thought to be the long range ordering as well as the collective properties. Obviously, the characteristic study of the nanostructure of the long range ordering materials is a valuable and attractive issue. Thus, we introduced several methods to synthesize the long range ordering nanowires and study the size effect to these materials. First of all, we studied the thermodynamic property of the type-Ⅱsuperconducting system Y1-xHoxNi2B2C (x=0, 0.1). The thermal fluctuation specific heat displays scaling behavior in a form of for all applied fields. Through proper choice of the transition temperature Tc(H), the scaled curves with different applied fields will converge to a universal curve. Thus, by optimizing the scaling fit, the parameters Tc(H) can be determined. A positive curvature is observed in the upper critical field HC2(T) curve. The best fitting of suggests that the pairing mechanism of this superconducting system might be abnormal. Therefore, the local pairing mechanism was suggested to play an important role in this behavior. However, the assumption of the shorter coherence length compared to conventional BCS superconductors inspires us to synthesize the nanostructure of superconductors. MgB2 nanowires were synthesized on various kinds of substrates by the two-step fabricating processes. The boron nanowires were firstly synthesized by the chemical vapor transportation reaction. Then the nanowires were sealed with an exceed amount of magnesium and the solid state reaction was performed to form the MgB2 nanowires. The length of the nanowires was investigated to be hundreds μm with the diameter of 50 nm by field emission electron microscopy. The FFT pattern of the high resolution transmission electron microscopy image illustrates the quasi-single crystal hexagonal structure of the nanowire. The low dc field magnetic response displays a perfect diamagnetism with onset superconducting transition temperature of 35 K. The superconducting hysteresis loop measurement indicates that the critical current density decreases with increasing applied magnetic field. Moreover, the superconducting Bi2Sr2CaCu2Oy nanowires were fabricated by sol-gel template method. The template was observed to embed with the superconducting Bi2Sr2CaCu2Oy nanowires by the field emission microscopy. The image of the high resolution transmission microscopy and the selected area diffraction pattern confirm for the polycrystalline orthorhombic structure and the diameter of the nanowire of 40 nm. The transition temperature is determined as 84 K. The superconducting hysteresis loop measurement indicates that the critical current density decreases with increasing applied magnetic field. The sol-gel template method was also adapted in synthesizing the colossal magnetoresistive La0.6Nd0.2Na0.2MnO3 and La0.8Ba0.2MnO3 nanowires. The nanowires was characterized to be the polycrystalline perovskite structure by X ray diffraction pattern, selected area diffraction pattern and high resolution electron microscopy image. The Curie temperature of the La0.6Nd0.2Na0.2MnO3 nanowires decreased to 294 K compared to the Curie temperature of the bulk material of 310 K. Moreover, the Curie temperature of the La0.8Ba0.2MnO3 nanowires decreased to 271 K compared to the Curie temperature of the bulk material of 295 K. The tendency of the Curie temperature change was consistent with the assumption of finite-size scaling theory. Therefore, the correlation length at 0 K is obtained to be 78 Å for La0.6Nd0.2Na0.2MnO3 nanowires and 95 Å for La0.8Ba0.2MnO3 nanowires. The results show that the correlation lengths at 0K are fairly close in both colossal magnetoresistive nanowires. Moreover, the one-dimensional Ising model can be adopted to give a reasonable explanation to the existence of the ferromagnetism of one-dimensional colossal magnetoresistive nanowires.
超導及磁性一直被認為是長程有序的集體行為。研究具長程有序性質的奈米結構特性是一個有價值且吸引人的課題。因此,我們利用幾種製程方法製造長程有序奈米線結構,並探討尺寸效應對材料的影響。 我們首先利用熱起伏函數比熱(Specific Heat)分析的方法探討摻雜了磁性離子後的硼碳第二類類超導樣品Y1-xRExNi2B2C(x=0, 0.1))的傳導性質,發現在不同外加磁場的條件下,都滿足一個通用的關係式 ,透過適當的超導轉變溫度Tc(H)的選取,不同外加磁場所得的比熱收斂曲線會幾乎收斂到同一條曲線上。因此藉由一個最佳化的收斂函數分析使曲線重合,將可幫助我們得到一個唯一適當的超導轉變溫度Tc(H)值。而上臨界磁場HC2(T)和溫度的關係可得到一曲率為正的分析結果,並可以方程式 來描述,此結果顯示出這類樣品的超導形成機制可能是不尋常的,且也和傳統BCS理論所主張的正的曲率關係不相吻合。而局域電子對理論(Local pairing mechanism)可能扮演著關鍵的角色。其中它也推論了超導的相干長度(Coherence length)可能較BCS所推導的短,這也進一步的引發了我們製造奈米尺寸超導體的動機。因此,我們結合了兩階段成長的方法在不同的基板上成長MgB2奈米線。首先利用化學氣相沉積法成長硼奈米線。再混以超量的鎂封管後,利用固態反應法燒結成直徑約為50nm,長度約有數百奈米的MgB2奈米線。透過高解析穿透式電子顯微鏡影像的傅立業分析我們知道奈米線為準單晶六角柱體結構。我們由超導干涉磁量儀的結果得到超導轉變溫度約為35 K。由磁滯曲線的測量得知其臨界電流密度會隨著外加磁場的增加而減少。此外,我們也透過溶液凝膠及奈米孔洞薄膜方法製造出高溫超導Bi2Sr2CaCu2Oy奈米線。從場發射電子顯微鏡的結果我們可以發現奈米孔洞薄膜中充滿了Bi2Sr2CaCu2Oy奈米線。透過高解析穿透式電子顯微鏡影像及擇區繞射分析,我們確認了奈米線的直徑約為40 nm,且為多晶正交晶系結構。奈米線的超導轉變溫度經測量約為84 K。由磁滯曲線的測量得知其臨界電流密度也會隨著外加磁場的增加而減少。 利用溶液凝膠及奈米孔洞薄膜製造方法我們也進一步製作龐磁阻(colossal magnetoresistance; CMR) La0.6Nd0.2Na0.2MnO3及La0.8Ba0.2MnO3奈米線。透過X光繞射分析,擇區繞射分析及高解析穿透電子顯微鏡影像獲知奈米線為多晶的鈣鈦礦結構 (perovskite structure)。我們在樣品居禮溫度的測量上發現相較於塊材,La0.6Nd0.2Na0.2MnO3 樣品的居禮溫度會從塊材的310 K降低至奈米線的294 K。La0.8Ba0.2MnO3樣品的居禮溫度會從塊材的295 K降低至奈米線的271 K。而這樣的居禮溫度改變過程正好跟運用有限尺度理論(Finite-size scaling theory)所預測的溫度降低現象相吻合。因而,我們可以推得龐磁阻La0.6Nd0.2Na0.2MnO3 奈米線0 K時的關聯長度(Correlation length)約為78 Å,龐磁阻La0.8Ba0.2MnO3奈米線0 K時的關聯長度約為95 Å。對於同是龐磁阻奈米線樣品的兩者來說是相當吻合的。此外,一維易行模型(One-dimensional Ising model)也給了為何一維龐磁阻奈米線磁性依舊存在的合理解釋。
URI: http://hdl.handle.net/11455/17129
其他識別: U0005-1708200917443300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708200917443300
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.