Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17131
標題: Analysis and Simulation on Electrical Properties of Thin Film Transistors Under Mechanical Strain
薄膜電晶體在機械應變作用下之電性分析與模擬
作者: 吳易駿
Wu, Yi-Chun
關鍵字: thin-film transistors
薄膜電晶體
flexible display
strain-enhanced
可撓式
應變
出版社: 物理學系所
引用: Chapter 2 [1] S. E. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, Tech. Dig. - Int. Electron Devices Meet. 2004, 221. [2] S. Maikap, C.-Y. Yu, S.-R. Jan, M. H. Lee, and C. W. Liu, IEEE Electron Device Lett. 25, 40 (2004). [3] C. W. Liu, S. Maikap, and C.-Y. Yu, IEEE Circuits Devices Mag. 21, 21 (2005). [4] F. Yuan, S.-R. Jan, S. Maikap, Y.-H. Liu, C.-S. Liang, and C. W. Liu, IEEE Electron Device Lett. 25, 483 (2004). [5] F. Yuan, C.-F. Huang, M.-H. Yu, and C. W. Liu, IEEE Trans. Electron Devices 53, 724 (2006). [6] H. Irie, K. Kita, K. Kyuno, and A. Toriumi, Tech. Dig. - Int. Electron Devices Meet. 2004, 225. [7] S. Maikap, M. H. Liao, F. Yuan, M. H. Lee, C.-F. Huang, S. T. Chang, and C. W. Liu, Tech. Dig. - Int. Electron Devices Meet. 2004, 233. [8] M. H. Liao, M. J. Chen, T. C. Chen, P. L. Wang, and C. W. Liu, Appl. Phys. Lett. 86, 223502 (2005). [9] M. H. Liao, S. T. Chang, M. H. Lee, S. Maikap, and C. W. Liu, J. Appl. Phys. 98, 066104 (2005). [10] P. Lengsfeld, N. H. Nickel, Ch. Genzel, and W. Fuhs, J. Appl. Phys. 91, 9128 (2002). [11] J. G. Fossum, A. Ortiz-Conde, H. Shichijo, and S. K. Banerjee, IEEE Trans. Electron Devices, p. 1878, (1985). [12] C. -F. Huang, Y. -J. Yang, C. -Y. Peng, F. Yuan, and C. W. Liu, Appl. Phys. Lett. 89, 103502 (2006). [13] S. Higashi, Ph.D. dissertation, Tokyo University of Agriculture and Technology, Chap 3, p. 34, (2001). [14] S. Takagi, Judy L. Hoyt, Jeffrey J. Welser, and James F. Gibbons, J. Appl. Phys. 80, 1567 (1996). [15] I.-J. Yang, C.-Y. Peng, S. T. Chang, and C. W. Liu, International Semiconductor Device Research Symposium, p. 187, (2005). [16] K. Uchida, T. Krishnamohan, K. C. Saraswat, and Y. Nishi, Tech. Dig. - Int. Electron Devices Meet., 135, (2005). [17] D.P. Gosain, Proc. Of ASID, p.32- p.37, 2006 Chapter 3 [1] K. Long, A. Z. Kattamis, I. -C. Cheng, H. Gleskova, S. Wagner, and J. C. Sturm, IEEE Electron Device Lett., 27, 111 (2006). [2] M. H. Lee, P. S. Chen, W.-C. Hua, C.-Y. Yu, Y. T. Tseng, S. Maikap, Y. M. Hsu, and C. W. Liu, IEDM Tech. Dig., p. 69, (2003). [3] H. Gleskova, S. Wagner, W. Soboyejo, and Z. Suo, J. Appl. Phys., 92, 6224, (2002). [4] H. Gleskova, S. Wagner, and Z. Suo, Appl. Phys. Lett., 75, 3011, (1999). [5] D. Striakhilev, A. Sazonov, and A. Nathan, J. Vac. Sci. Technol. A, 20, 1087, (2002). [6] C.-S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, J. Vac. Sci. Technol. B, 18, 683, (2000). [7] B. A. MacDonald, K. Rollins, D. MacKerron, K. Rakos, R. Eveson, K. Hashimoto, and B. Rustin, “Flexible Flat Panel Display”, ed. G. P. Crawford (Wiley, Chichester, U.K., 2005), p. 11. [8] C.-C. Cheng, K.-Y. Ho, P.-C. Chen, M. H. Lee, L.-T. Wang, H. L. Tyan, C.-M. Leu, Y.-A. Sha, S.-Y. Fan, T.-H. Chen, C.-Y. Pan, and Y.-H. Yeh, Proc. Active-Matrix Flat Panel Displays and Devices (AM-FPD), p. 7, 2006. [9] T. Chikamura, S. Hotta, and S. Nagata, Mat. Res. Soc. Symp. Proc., 95, 421, (1987). [10] K. Hiranaka, T. Yoshimura, and T. Yamaguchi, Jpn. J. Appl. Phys., 28 (11), 2197 (1989). [11] K. Hiranaka, T. Yoshimura, and T. Yamaguchi, Jpn. J. Appl. Phys., 62, 2129 (1987). [12] J. A. Thornton and D.W. Hoffman, Thin Solid Films, 171, 5 (1989). [13] M. D. Thouless, J. Vac. Sci. Technol., A9 (4), 2510 (1991). [14] M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane, and W. I. Milne, Phys. Rev. B, 45 (8), 4160 (1992). [15] M. H. Lee, K.-Y. Ho, P.-C. Chen, C.-C. Cheng, S. T. Chang, M. Tang, M. H. Liao, and Y.-H. Yeh, IEDM Tech. Dig., p. 299 (2006) Chapter 4 [1] H. Kavak and H. Shanks: Solid-State Electron. vol. 49, p. 578-584 (2005) [2] K. Long, A. Z. Kattamis, I. C. Cheng, H. Gleskova, S. Wagner and J. C. Sturm: IEEE Electron Device Lett., 27, 111 (2006). [3] Y. Q. Fu, J. K. Luo, S. B. Milne, A. J. Flewitt and W. I. Milne: Materials Science and Engineering B Vol. 124-15 p.132 (2005). [4] G. Fortunato and P. Migliorato: Appl. Phys. Lett., vol. 49, p.1025-1027 (1986). [5] G. Fortunato, D. B. Meakin, P. Migliorato and P. G. Le Comber: Philos. Mag., vol. B57, p.573-586 (1988). [6] H. C. Lin, K. L. Yeh, M. H. Lee, Y. C. Su, T. Y. Huang, S. W. Shen and H. Y. Lin: IEDM Tech. Dig., p. 781-784 (2004). [7] C. Y. Huang, S. Guha and S. J. Hudgens: Phys. Rev. B, 27 (12), 7460 (1983). [8] J. D. Cohen, D. V. Lang and J. P. Harbison: Phys. Rev. Lett., 45 (3), 197 (1980)
摘要: This study focuses on the analysis and simulation on electrical properties of thin-film transistors under mechanical strain. In the first part, the electrical current change of the p-channel polycrystalline silicon thin-film transistors is analyzed experimentally and theoretically under various strain conditions. In the second part, by using atomic force microscopy measurements and the micro-Raman spectra of an amorphous silicon layer of the thin-film transistors on a flexible substrate, we are able to thoroughly observe the long-range and short-range disordered bonds of the amorphous silicon structure after bending cycles. The weak or broken bonds may contribute to the redistribution of the trap states, and lead to unstable electrical characteristics. At last, microcrystalline silicon thin-film transistors on flexible substrates under mechanical strains are studied. The conventional field-effect conductance method is adopted in order to extract the density-of-states of the microcrystalline silicon thin-film transistors. Deep level states and tail states, which are extracted by using the field-effect conductance method, display an obvious change under mechanical bending. The simulation results suggest that the change of the density-of-states degrades the performance of electrical property of the device.
論文主旨在探討薄膜電晶體於應變作用下的電性變化。論文第一部分針對製備於玻璃基板上的P型多晶矽薄膜電晶體進行應變分析,分析重點在觀察施加應變力於元件後對其載子遷移率的影響。實驗結果顯示只有垂直施加應變力於電晶體之載子通道可增加其遷移率,而對載子通道施予平行或雙軸應變則會讓遷移率下降,理論的計算也定性地符合此一結果。第二部分探討製備於軟性基板上的非晶矽電晶體在應變作用下的電性變化及可靠度分析。藉由特製的應力治具,分別量測元件於撓曲時以及經過多次撓曲後的電性變化,再將量測結果透過半導體元件模擬軟體之擬合分析,推論出電性的變化與撓曲後深階能態密度的增加有關。最後,運用相同手法分析微晶矽薄膜電晶體。其電性變化趨勢與非晶矽電晶體相似,然透過粹取能態密度並經軟體擬合後,發現其深階能態密度不但上升且向尾態靠近,而尾態的斜率也稍微變小,顯示微晶矽電晶體於應變測試後臨界電壓與載子遷移率同時有劣化傾向。
URI: http://hdl.handle.net/11455/17131
其他識別: U0005-1908200916233500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908200916233500
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.