Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17171
DC FieldValueLanguage
dc.contributor吳仲卿zh_TW
dc.contributor洪連輝zh_TW
dc.contributor吳秋賢zh_TW
dc.contributor.advisor孫允武zh_TW
dc.contributor.authorChen, Mei-Houen_US
dc.contributor.author陳梅侯zh_TW
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:58:13Z-
dc.date.available2014-06-06T06:58:13Z-
dc.identifierU0005-2106201013512100zh_TW
dc.identifier.citation參考資料 [1] 鄭振東,“實用磁性材料學“,全華科技出版社(1999). [2] R. C. O’Handley, “Modern Magnetic Materials”, Wiley Interscience Publication company (2000). [3] A. Belkin, V. Novosad, M. Iavarone, J. Fedor, J. E. Pearson, A. Petrean-Troncalli, and G. Karapetrov, Applied Physic Letters 93, 072510 (2008). [4] S. Hankemeier, R. Fromter, N. Mikuszeit, D. Stickler, H. Stillrich, S. Putter, E. Y. Vedmedenko, and H. P. Oepen, Physical Review Letters 103, 147204 (2009). [5] N. X. Sun, S. X. Wang, T. J. Silva, Member, and A. B. Kos, IEEE Transactions on Magnetics 38, 1 (2002). [6] C. Kittel “Introduction to Solid State Physics”, Eighth edition, John Wiley & Sons, Inc. (2005). [7] S. Chikazumi, ‘Physics of Freeomagnetism’, Oxford, New York, (1997). [8] J. P. Nibarger, R. Lopusnik, Z. Celinski, and T. J. Silva, Applied Physic Letters 83, 93 (2003). [9] R. N. Simons, "Coplanar Waveguide Circuits, Components, and Systems" John Wiley & Sons, (2001). [10] C. P. Wen, IEEE Transactions on Microwave Theory and Techniques 17, 1087 (1969). [11] C. Veyres, V. Fouad Hanna, International Journal of Electronics 48, 47 (1980). [12] H. Zhang, A. Hoffmann, R. Divan, and P. Wang, Applied Physics Letters 95, 232503 (2009). [13] Y. Nozaki, K. Tateishi, S. Taharazako, S. Yoshimura, and K. Matsuyama, Applied Physics Letters 92, 161903 (2008). [14] Y. S. Gui, N. Mecking, and C. M. Hu, Physical Review Letters 98, 217603 (2007). [15] J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov, R. A. Buhrman, and D. C. Ralph, Physical Review Letters 96, 227601 (2006). [16] W. H. Hsieh, Y. W. Suen, S. Y. Chang, L. C. Li, C. H.Kuan, B. C. Lee, and C. P. Lee, Applied Physics Letters 85, 4196 (2004). [17] 宋育泰,“高感度低飄移微波向量偵測器應用在低溫低維度電子系統”, 碩士論文, 國立中興大學物理系 (2006) [18] Y. W. Suen, W. H. Hsieh, C. L. Chen, L. C. Li, C. H. Kuan, Review of Scientific Instruments 76, 084704 (2005) [19] J. B. Hagen, "Radio-Frequency Electronics", Cambridge University Press (1996). [20] T. J. Sliva, C. C. Lee, T. M. Crawford, and C. T. Rogers, Journal of Applied Physics 85, 11 (1999). [21] M. Steiner, C. Pels, and G. Meier, Journal of Applied Physics 95, 11 (2004). [22] Y. S. Gui, S. Holland, N. Mecking, and C. M. Hu, Physical Review Letters 95, 056807 (2005). [23] C. Bell, S. Milikisyants, M. Huber, and J. Aarts, Physical Review Letters 100, 047002 (2008). [24] W. Platow, A. N. Anisimov, G. L. Dunifer, M. Farle, and K. Baberschke, Physical Review B 58, 5611 (1998).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/17171-
dc.description.abstractIn this study, we use coplanar waveguide (CPW) to detect ferromagnetic resonance (FMR) properties of Permalloy (Ni80Fe20) thin film. We fabricated coplanar waveguide with a 100 nm thick permalloy thin film on a 4 mm × 3 mm GaAs substrate. The variations of the phase and the amplitude of microwave signals through the sample were measured by a home-made ultra-high sensitivity microwave vector meter. We found that the types and resonant frequencies are strongly affected by the coplanar patterns. The amplitude of ferromagnetic resonance at 10K is larger than that at 300K, and resonance points are obviously shifted to high magnetic field when the frequency is above 10 GHz. Moreover, we also found that the ferromagnetic resonances decrease by increasing the angle between the magnetic field and the normal of the sample surface. We fit the experiment data with is θ the theoretical model, and obtain the gyromagnetic ratio and damping factor decrease which as θ increases or temperature decreases.en_US
dc.description.abstract本篇論文是利用共平面波導(CPW)來研究鎳鐵薄膜的鐵磁共振特性。我們在4mm × 3mm的不導電GaAs基板上製作厚100 nm的鎳鐵金屬共平面波導,並利用實驗室自製的超高感度微波向量偵測器觀察微波訊號分析微波訊號經過樣品後相位及振幅的變化。我們發現不同的共平面波導圖形會有不同的共振頻寬及形式;溫度在10K時鐵磁共振比300K有較大的共振幅度,並且共振點在頻率大於10 GHz後,明顯往高磁場偏移。然而我們同樣注意到,共振頻寬偏移現象卻會因為外加磁場對樣品法線表面的角度增加而變小。將實驗數據與理論做擬合及比較,發現旋磁性與阻尼因子會因外加磁場角度增加及溫度降低而變小。zh_TW
dc.description.tableofcontents號與縮寫表 前言 第一章 緒論 P.1 1.1 簡介 P.1 1.2 磁性物質簡介 P.1 1.3 鎳( Ni )-鐵( Fe )合金簡介 P.3 1.4 鐵磁共振簡介 P.5 1.5 共平面波導 P.7 第二章 樣品的製程與測試 P.10 2.1 樣品介紹 P.10 2.2 樣品製作 P.10 2.3 樣品的封裝及測試 P.11 第三章 量測系統與方法 P.16 3.1 VTi低溫系統 P.16 3.2 量測系統 P.19 3.3 鎖相迴路簡介 ( Phase Lock Loop) P.21 3.4 延遲時間 ( Delay time ) P.22 第四章 實驗數據分析與討論 P.27 4.1 數據處理 P.27 4.2 測量元件 P.27 4.3 實驗結果與討論 P.29 4.4 結論 P.59 參考資料 P.60zh_TW
dc.language.isoen_USzh_TW
dc.publisher物理學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2106201013512100en_US
dc.subjectferromagnetic resonanceen_US
dc.subject鐵磁共振zh_TW
dc.subjectPLLen_US
dc.subjectNiFe thin filmen_US
dc.subject鎖相迴路zh_TW
dc.subject鎳鐵薄膜zh_TW
dc.title利用共平面波導探測鎳鐵薄膜的鐵磁共振特性zh_TW
dc.titleUsing coplanar waveguide to detect ferromagnetic resonance properties of Permalloy thin filmen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:物理學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.