Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17181
標題: 利用掃描式近場光學顯微鏡研究GaN薄膜缺陷及Ge薄膜結構
Studies of Defects in GaN Films and Distribution of Ge in SiO2/Ge/Si Structures by Using Scanning Near-Field Optical Microscope
作者: Chung, Chia-Tsung
莊佳璁
關鍵字: SNOM
掃瞄式近場光學
optical fiber tip
GaN
Ge
光纖探針
氮化鎵
出版社: 物理學系所
引用: 參考文獻 [1] 蔡定平, “近場光學顯微術及其應用”, 科儀新知, 第17卷, 第5期, p4 (1996). [2] 蔡定平, “掃描近場光學顯微儀”, 科儀新知, 第21卷, 第5期, p17 (2000). [3] 蔡定平, 高宗聖 ”近場光學新視界”科學發展, 第386期, p22-27 (2005). [4] D. Courjon, “Near-Field Microscopy and Near-Field Optics”, Imperial College Press (2003). [5] R. Toledo-Crow, P. Yang, Y. Chen and M. Vaez-Iravani, Appl. Phys. Lett. 60, 2957 (1992). [6] E. Betzig, P. L. Finn, and J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992). [7] R. Tolodo-Crow, P. Yang, Y. Chen, and M. Vaez-Iravani, Appl. Phys. Lett. 60, 2957 (1992). [8] B. Vohnsen, B. Bozhevolnyi, and R. Olesen, Ultramicroscopy 61, 207 (1995). [9] K. Karrai and R. D. Grober, SPIE 69, 2535 (1995). [10] K. Karrai and R. D. Grober , Appl. Phys. Lett. 66, 14 (1995). [11] K. Karrai and I. Tiemann , Phys. Rev. B 62, 19 (2000). [12] D. P. Tsai and Y. Y. Lu, Appl. Phys. Lett. 73, 2724 (1998). [13] C. Obermuller and K. Karrai , Appl. Phys. Lett. 67, 23 (1995). [14] N. Chevalier, Y. Sonnefraud, J.F.Motte, and S. Huant, Appl. Phys. Lett. 77, 063704 (2006). [15] M. Chaigneau, T. Minea, G. Louarn, Ultramircoscopy 107, 1042-1047 (2007). [16] G. A. Valaskovic, M. Holton, and G.H. Morrison, Appl. Opt. 4, 12115 (1995). [17] P. Hoffman, B. Dutoit, and R.P. Salathe, Ultramiscopy 61, 165 (1995). [18] C. Kittel, "Introduction to Solid State Physics", Eighth Edition, John Wiley &Sons, Inc. (2005). [19] D. S. Wuu, H. W. Wu, S. T. Chen, T. Y. Tsai, X. Zheng, R. H. Horng, J. Cryst. Growth 311, 3063-3066 (2009). [20] S. Keller, G. Parish, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett.77, 2665 (2000). [21] Y. Kato,S. Kitamura, K. Hiramatus, N. Sawaki, J. Cryst. Growth 144, 133 (1994). [22] K. Iida, T. Kawashima, A. Miyazaki, H. Kasugai, S. Mishima, A. Honshio, Y. Miyake, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, J. Cryst. Growth 272, 270 (2004). [23] X. Sun, J. Liu, Lionel C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009) [24] Z. Zhong, A. Halilovic, T. Fromherz, F. Schaffler, G. Bauer, Appl.Phys. Lett. 82, 4779 (2003). [25] Z. Zhong, G. Bauer, Appl. Phys. Lett. 84, 1922 (2004). [26] J. T. Robinson, J. A. Liddle, A. Minor, V. Radmilovic, D. O. Yi, P. A. Greaney, K. N. Long, D. C. Chrzan, O. D. Dubon, Nano Lett. 5, 2070 (2005). [27] T. S. Yoon, Z. Zhao, J. Liu, Y.H. Xie, D. Y. Ryu, T. P. Russell, H.M.Kim, K. B. Kim, Appl. Phys. Lett. 89, 063107 (2006). [28] T. I. Kamins, R. S. Williams, Appl. Phys. Lett. 71, 1201 (1997). [29] “P-2000 MICROPIPETTE PULLER “, Sutter Instrument Company, 51 Digital Drive Novato, CA 94949 U.S.A (2006). [30] “Scanning Near-Field Optical Microscope attoSNOM III“, attocube systems AG, Koniginstr. 11a Rgb D-80539, German (2007).
摘要: We present nondestructive testing methods for detecting the defect distribution in GaN thin film on patterned sapphire substrates and the uniformity of Ge on patterned Si wafers by using scanning near-field optical microscopy (SNOM). There are two different patterns on the sapphire substrates: the first one is a recess pattern with 3μm diameter and 1.5μm deep holes; the other one is a protruding pattern with 3μm of diameter and 1.5μm high mesas. Random circular SiO2 structures of diameter 1μm and thickness 100nm were implanted in the GaN films grown on the recess-patterned sapphire substrates. We use He-Cd Laser (325 nm) or green light semiconductor laser (532 nm) as the light source in the SNOM system. From the transmission SNOM images, we found that the positions of defects are usually near the edge of the recess holes on sapphire. Furthermore, the GaN films above the implanted SiO2 are in good quality. On the other hand, we use an infrared detector (900~1700 nm) as the transmission detector in the SNOM system to investigate the distribution of 300nm Ge film under a 100nm SiO2 cap layer on a patterned Si wafer after 10 min annealing at 900 ℃. The pattern on the Si wafer consists of hole arrays with 200 nm diameter, 20nm depth and pitch of 800 or 1000 nm. These patterns are defined by e-beam lithography and reactive ion etching. We can identify the Ge distribution without removing the cap layer.
本篇論文中,我們利用掃描式近場光學顯微鏡對不同樣品做非破壞性檢測分析。我們用紫外光雷射或綠光雷射耦合入光纖,使用掃描式近場光學顯微鏡觀察圖樣化藍寶石基板上成長之氮化鎵薄膜的缺陷。圖樣化藍寶石基板分別為凹、凸直徑3μm深為1.5μm兩種圓形陣列圖樣,其中GaN薄膜成長於凹的藍寶石基板的過程中再隨機的植入直徑約1μm厚約100nm的SiO2圓形結構。藉由我們得到的影像可以發現SiO2結構上方會形成良好的GaN薄膜導致有將雷射完全吸收的現象,並且藍寶石基板凹洞上方亦可以長出良好的GaN薄膜;在有凸起狀的藍寶石基板上長的GaN,其高低交界處有明顯的缺陷。 此外,我們用紅外光雷射耦合入光纖,並利用光偵測晶片(900 ~ 1700 nm)改裝成可架入系統中光偵測器,進而可以得到Ge薄膜在SiO2/Si晶片中的生長分佈狀況。而矽基板是由電子束微影術與反應性離子蝕刻製作出直徑為200nm、深20nm的圓洞,圓洞互相間隔距離分別為800nm、1000nm。Ge薄膜厚300nm,最後還附蓋上100nm的SiO2來保護Ge薄膜。 在本實驗中,我們成功運用掃描式近場光學顯微鏡及自製光纖探針配合不同光源跟光偵測器開發出可適用檢測不同能隙材料在不同種類晶片中生長情形之非破壞性近場量測。
URI: http://hdl.handle.net/11455/17181
其他識別: U0005-2308201017023700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201017023700
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.