Please use this identifier to cite or link to this item:
標題: 軟性底閘極微晶矽薄膜電晶體之低頻雜訊特性
Low-frequency Noise Properties of Flexible Bottom-gate Microcrystalline Silicon Thin Film Transistors
作者: 喬宗沛
Chiao, Tsung-Pei
關鍵字: microcrystalline silicon TFT
1/f noise
mobility fluctuations
threshold voltage
出版社: 物理學系所
引用: Reference [1] A. J. Snell, K. D. Mackzie, W. E. Spear, P. G. LeComber, and A. J. Hughes, J. Appl. Phys. 74, 3993 (1993). [2] D. Rigaud, M. Valenza, and J. Rhayem, Proc. Inst. Elect. Eng.—Circuits Devices Syst. 149, 75 (2002). [3] R. L. Weisfield, J. Non-Cryst. Solids 164, 771 (1993). [4] 楊智凱,葉仲基,機率密度函數統計特性應用於搬運車振動分析之研究。 [5] J. B. Johnson, Phys. Rev. 26, 71 (1925). [6] F. N. Hooge, Phys. Lett. 29A, 139 (1969). [7] P. G. Collins, M. S. Fuhrer, and A. Zettla, Appl. Phys. Lett.76, 894 (2000). [8] F. N. Hooge, IEEE Trans. Electron Devices Lett. 41, 1926 (1994). [9] S. R. Hofstein, Field-Effect Transistors, J. T. Wallmark (1966). [10] F. Crupi, P. Srinivasan, P. Magnone, E. Simoen, C. Pace, D. Misra, and C. Claeys, IEEE Electron Device Lett. 27, 688 (2006). [11] F. N. Hooge, “1/f noise,” Physica B. 83, 14 (1976). [12] F. M. Klaassenn, IEEE Electron Device Lett. 18, 887 (1971). [13] A. L. McWHORTER, Semiconductor surface physics. University of Pennsylvania Press, Philadelphia. (1957). [14] L. K. J. Vandamme, Solid-State Electron. 23, 317 (1980). [15] Adel S. Sedra, Kenneth C. Smith. Microelectronic circuits. A Wiley-interscience Publication (2004). [16] M. H. Lee, S. T. Chang, C. C. Lee, Thin Solid Films. 518, 246 (2010). [17] M. J. Deen, S. L. Rumyantsev, D. Landheer, and D. X. Xu, Appl. Phys. Lett. 77, 2234 (2000). [18] L. K. J. Vandamme, X. Li, and D. Rigaud, IEEE Trans. Electron Devices Lett. 41, 1936 (1994). [19] 郭宗慶, 碩士論文,照光對氮化鎵奈米線元件低頻雜訊的影響,中興大學物理系 (2008)。 [20] 洪聖席, 碩士論文,利用勞倫茲雜訊探討氮化鋁鎵奈米線的缺陷能階,中興大學物理系 (2010)。
摘要: 本實驗為探討微晶矽薄膜電晶體(Microcrystalline silicon thin film transistors, μc-Si TFT)的低頻雜訊特性,樣品為三種通道長度分別為9、11、22 μm的μc-Si TFT,以一個電池盒提供閘極電壓(Vgs),並利用電流放大器(SR570)內建電壓源提供汲極源極間的偏壓(Vds),由SR570將汲極源極間的電流(Ids)放大為轉換為電壓訊號,再經過電壓放大器(SR560)用AC耦合處理後,將訊號由頻譜分析儀(SR780)截取後進行傅立葉轉換分析。我們分別在不同的閘極電壓Vgs、不同的汲極電壓Vds下量測雜訊,最後改變環境溫度量測並比較結果。實驗結果發現:此樣品元件的1/f雜訊為遷移率擾動造成;固定Vgs時,Vds越大則雜訊越大;固定Vds時,Vgs越大載子數目越多則雜訊越小;不同通道長度的TFT,在相同的Vds與Vgs下,長度與雜訊成反比。而樣品改變溫度時,樣品的臨界電壓(Threshold voltage)會變動,而溫度的變化也會影響到雜訊,不容易恢復到原來的特性狀態,表示劇烈的溫度變化會使這種軟質可撓式的TFT產生不穩定現象。
We study the low-frequency noise properties of microcrystalline silicon thin film transistor(μc-Si TFT). There are three μc-Si TFT samples with different channel lengths, 9, 11, 22 μm, respectively. The sample is placed in a cryogenic probe station which temperature can be various from 77 K to 400 K. The gate voltage (Vgs) is provided by a home-made battery bank. The drain - source voltage (Vds) is given by the internal DC voltage source of the current amplifier (SR570). The drain - source current (Ids) is amplified by SR570 and then fed into AC couple low-noise voltage preamplifier (SR560). Finally, the time-domain signal is collected by a network signal analyzer (SR780). We can deduce the noise spectral density from the data of SR780 by programs. As the result indicates, the device's 1/f noise causes from mobility fluctuations. Not only examining the noise behaviors at various Vgs or Vds conditions, we also check the stability of the component under thermal cycles. At same Vgs, we find that the higher Vds is, the larger the noise becomes. Consequently, the noise increases as Vgs increase at same Vds. In other word, the carrier number makes the noise decreases. We also observe that the operating point of the TFT component is changed after thermal cycles. This flexible TFT is difficult to recover original properties and becomes unstable when the temperature varied rapidly.
其他識別: U0005-2608201007015400
Appears in Collections:物理學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.