Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17187
DC FieldValueLanguage
dc.contributor吳秋賢zh_TW
dc.contributor王昌仁zh_TW
dc.contributor李文新zh_TW
dc.contributor洪連輝zh_TW
dc.contributor.advisor藍明德zh_TW
dc.contributor.author盧宗伯zh_TW
dc.contributor.authorLu, Tsung-Poen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:58:14Z-
dc.date.available2014-06-06T06:58:14Z-
dc.identifierU0005-2707201018340500zh_TW
dc.identifier.citationReference [1] H. K. Onnes. Phys. Lab. Univ. Leiden 12: 120. (1911) [2] W. Meissner and R. Ochsenfeld. Naturwiss. 21 (44): 787-788(1933) [3] J. Bardeen, L. N. Cooper and J. R. Schrieffer. Phys. Rev. 108 (5): 1175(1957) [4] J. G. Bednorz and K. A. Müller, Z. Phys. B64, 189 (1986). [5] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang,Y.Q. Wang, and C.W. Chu, Phys. Rev. Lett. 58, 908 (1987). [6] Hikami, T. Hirai, and S. Kagosima, Jpn. J. Appl. Phys. 26, L314 (1987). [7] Sheng, Z.; Hermann, A.; El Ali, A.; Almasan, C.; Estrada, J.; Datta, T.; Matson, R. Physical Review Letters 60: 937. (1988) [8] P. Dai, B. C. Chakoumakos, G. F. Sun, K. W. Wong, Y. Xin and D. F. Lu. Physica C:Superconductivity 243 (3-4): 201(1995) [9] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano and Hideo Hosono. J. Am. Chem. Soc. 130 (2008) 3296. [10] Ren Zhi-An, Lu Wei, Yang Jie, Yi Wei, Shen Xiao-Li, Zheng-Cai, Che Guang-Can, Dong Xiao-Li, Sun Li-Ling, Zhou Fang and Zhao Zhong-Xian. Chin Phys Lett 25:2215.(2008) [11] Hiroki Takahashi, Kazumi Igawa, Kazunobu Arii, Yoichi Kamihara, Masahiro Hirano and Hideo Hosono. Nature 453(2008), 376-378 [12] Peng Cheng, Lei Fang, Huan Yang, Xiyu Zhu, Gang Mu, Huiqian Luo, Zhaosheng Wang and Hai-Hu Wen. Sci. China Phys. Mech. Astron. 51(2008) 719. [13] Athena S. Sefat, Ashfia Huq, Michael A. McGuire, Rongying Jin, Brian C. Sales, David Mandrus, Lachlan M. D. Cranswick, Peter W. Stephens, and Kevin H. Stone. Phys. Rev. B 78 (2008) 104505. [14] Zhi-An Ren, Guang-Can Che, Xiao-Li Dong, Jie Yang, Wei Lu, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Li-Ling Sun, Fang Zhou, Zhong-Xian Zhao. Europhys. Lett. 83 (2008) 17002 [15] Hai-Hu Wen, Gang Mu, Lei Fang, Huan Yang, and Xiyu Zhu. Europhys. Lett. 82 (2008) 17009. [16] Gang Mu, Lei Fang, Huan Yang, Xiyu Zhu, Peng Cheng and Hai-Hu Wen. J. Phys. Soc. Jpn. 77 (2008) 15. [17] Huiqian Luo , Zhaosheng Wang , Huan Yang , Peng Cheng , Xiyu Zhu and Hai-Hu Wen. Supercond. Sci. Technol. 21 125014(2008) [18] X. C. Wang, Q. Q. Liu, Y. X. Lu, W. B. Gao, L. X. Yang, F. Y. Li, R. C. Yu, C. Q. Jin. Solid State Communications 148, 538-540 (2008) [19] Fei Han, Xiyu Zhu, Gang Mu, Peng Cheng, and Hai-Hu Wen. Phys. Rev. B 78, 180503 (2008). [20] Fong-Chi Hsu, Jiu-Yong Luo, Kuo-Wei Yeh, Ta-Kun Chen, Tzu-Wen Huang, Phillip M. Wu, Yong-Chi Lee, Yi-Lin Huang, Yan-Yi Chu, Der-Chung Yan, and Maw-Kuen Wu. PNAS 105 (38): 14262-14264.(2008) [21] Ishikawa, M. and Fisher, Ø., Solid State Commun., 1977, 23,37. [22] Phillip, J. C., in Physics of High-Tc Superconductors. Academic Press, New York, 1989. [23] M. D. Lan, T. J.Chang and C. S. Liaw. J. Phys. Chem Solids Vol 59,1285-1292(1998) [24] F. loch, Z.Phys.57, 545(1929) [25] A. H. Wilson, Proc. Roy. Soc. A 133,458(1931) [26] N. F. Mott and R. Peierls, Proc. Phys. Soc. London, Sect. A 49, 72(1937) [27] N. F. Mott, Proc. Phys. Soc. London, Sect A62, 416(1949) [28] N. F. Mott, Can. J. Phys. 34, 1356(1956) [29] N. F. Mott, Philos. Mag. 6, 287(1961) [30] J. Hubbard, Proc. R. London Soc., Ser A 277, 237(1964) [31] J. Hubbard, Proc. R. London Soc., Ser A 281, 401(1964) [32] R. E. Peierls, Quantum Theory of Solids (Oxford University Press, Oxford, 1955), 108 [33] A. Overhauser, Phy. Rev. Lett. 4, 226(1960) [34] J. Dong, H.J. Zhang, G. Xu, Z. Li, G. Li, W.Z. Hu, D. Wu, G.F. Chen, X. Dai, J.L. Luo, Z. Fang, N.L. Wang, Europhys. Lett. 83 27006(2008) [35] Tinkham, M., in Introduction to Superconductivity, 2nd edn, ed. J. Shira and E. Castellano. McGraw-Hill, Singapore (1996). [36] Eisaki, H., Takagi, H., Cava, R. J., Batlogg, B., Krajewski, J. J., Peck, W. F. Jr., Mizuhashi, K., Lee, J. O. and Uchida, S. Phys. Rev. B 50 647(1994).en_US
dc.identifier.urihttp://hdl.handle.net/11455/17187-
dc.description.abstractIn this dissertation, we have investigated the superconducting and magnetic properties of the hole-doped FeAs-based superconducting compounds La0.87-xLnxSr0.13FeAsO (Ln = Sm, Gd, Dy; 0 ≤ x ≤ 0.06). The existence of the RE+3 paramagnetic ions causes the depression of superconductivity. The properties of the hole-doped FeAs-based superconducting compound have been measured over wide temperature and magnetic field ranges. The hysteresis loop of the La0.87-XLnXSr0.13FeAsO sample shows a superconducting hysteresis in addition to a magnetic moment background. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. We found that by substituting in the FeAs-based superconductors of the hole-doped system with the magnetic rare-earth element, the value of Tc in the resultant material starts to decrease, even the samples have not superconductivity with doping more magnetic rare-earth element. On the other hand, it is clear that the influence of superconductivity of doping Dy3+ is more evident than Gd3+,while the influence of Sm3+ is the weakest among these three magnetic rare-earth element.en_US
dc.description.abstract在本篇論文當中,我們將探討電洞型鐵基超導體La0.87-xLnxSr0.13FeAsO (Ln = Sm, Gd, Dy; 0 ≤ x ≤ 0.06)中磁性與超導性共存的現象。磁性離子一直被認為是超導性的剋星,微量的磁性雜質就會嚴重阻止超導電性的形成。在此實驗中,我們成功製成了以電洞掺雜的鐵基超導材料,並在以鐵砷為基材的超導材料中,掺雜稀土磁性離子Sm3+、Gd3+、Dy3+,來探討稀土離子對其超導電性的影響。我們將對製成的鐵砷高溫超導在廣泛的溫度(5K~300K)及大範圍的磁場下(0~±7T)作磁性、電性的量測。由磁滯曲線的量測中,我們觀察到了隨著磁性稀土離子的掺雜增加,圖形的磁性背景訊號也會跟著增加,這顯示了超導與磁性共存的現象。我們也發現到隨著稀土磁性離子Sm3+、Gd3+、Dy3+掺雜的比例增加,電洞型鐵砷超導體的超導轉換溫度Tc會隨著下降。另外,我們也觀察到,在掺雜相同比例的稀土磁性離子之下,掺雜Dy3+離子對超導性的影響最為明顯,其次是掺雜Gd3+離子,掺雜Sm3+離子對超導性的影響最小。zh_TW
dc.description.tableofcontentsContents Abstract(Chinese) I Abstract II Contents III List of Figures V Chapter 1. Introduction 1 1.1 History of superconductivity 1 1.1.1 Zero resistance and Meissner effect 1 1.1.2 BCS theory 3 1.1.3 High-temperature superconductivity 4 1.2 Iron-based superconductor 7 1.2.1 LaFeAsFxO1−x 7 1.2.2 LnFeAsFxO1−x 9 1.2.3 Hole doped FeAs-based superconductor 11 1.2.4 FeSe superconductor 14 1.3 Coexistence of superconductivity and magnetic ordering 16 1.4 Spin-density wave and charge-density wave 18 1.5 Spin fluctuation 22 Chapter 2. Experiments 24 2.1 Sample preparation 24 2.2 Powder X-ray Diffraction Measurement 26 2.3 Magnetization and Magnetic Susceptibility Measurement 27 2.4 Electrical transport measurements 30 Chapter 3. Results and Discussion 31 3.1 X-ray Diffraction Results 31 3.2 Electrical Transport Measurement Results 40 3.3 Magnetization Measurement Results 55 Chapter 4. Conclusion 68 Reference 69  zh_TW
dc.language.isoen_USzh_TW
dc.publisher物理學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707201018340500en_US
dc.subjectmagnetismen_US
dc.subject鐵基zh_TW
dc.subjectsuperconductivityen_US
dc.subjecthole-dopeden_US
dc.subjectFeAs-baseden_US
dc.subject超導zh_TW
dc.subject電洞zh_TW
dc.subject磁性zh_TW
dc.title掺雜磁性稀土元素之新穎電洞型鐵基超導體的研究zh_TW
dc.titleEffect of Rare earth Magnetic ions on Superconductivity in hole-doped La0.87-XLnXSr0.13FeAsO systemsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:物理學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.