Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17193
DC FieldValueLanguage
dc.contributor藍明德zh_TW
dc.contributorMing-Der Lanen_US
dc.contributor林得裕zh_TW
dc.contributor林泰源zh_TW
dc.contributorDer-Yuh Linen_US
dc.contributorTai-Yuan Linen_US
dc.contributor.advisor龔志榮zh_TW
dc.contributor.advisorJyh-Rong Gongen_US
dc.contributor.authorSu, Hsin-Lunen_US
dc.contributor.author蘇信綸zh_TW
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:58:15Z-
dc.date.available2014-06-06T06:58:15Z-
dc.identifierU0005-3006201014485300zh_TW
dc.identifier.citation【1】 Guojia J. Fang, Dejie Li, Bao-Lun Yao, Journal of Physics D:Applied Physics Vol.35 p.3096 (2002). 【2】 B. M. Atave, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, R. A. Rabadanov, Thin Solid Films Vol.260 p.19 (1995). 【3】 S. M. Rozati, T.Ganj, Renewable Energy Vol.29 p.1671 (2004). 【4】 K.H. Choi, J.Y. Kim, Y.S. Lee,H.J.Kim, Thin Solid Films Vol.341 p.152 (1999). 【5】 Yoichi Hoshi, Hiro-omi Kato, Kentaro Funatsu, Thin Solid Films Vol.445 p.245 (2003). 【6】 C. G. Granqvist, A. Hultaker, Thin Solid Films Vol.411 p.1 (2002) 【7】 Kentaro Utsumiu, Osamu Matsunaga, Tsutomu Takahata, Thin Solid Films Vol.334 p.30 (1998). 【8】 Jesper N. Ravn, “Laser-Induced Grating in ZnO” IEEE Journal of Quantum Electronics Vol.28 p.1 (1992). 【9】 Hengxiang Gong, Yinyue Wang, Zhijun Yan, Yinghu Yang, Materials Science in Semiconductor Processing Vol.5 p.31 (2002). 【10】 Walter Water, Sheng-Yuan Chu, Materials Letters Vol.55 p.67 (2002). 【11】 A. R. Phani, M. Passacantando, S. Santucci, Materials Chemistry and Physics Vol.68 p.66 (2001). 【12】 W. J. Lee, Y.-K. Fang, J.-J. Ho, C.-Y. Chen, L-H. Chiou S.-J.Wang, F. Dai, T. Hsieh, R.-Y. Tsai, D. Huang, F. C. Ho, Solid-State Electronics Vol.46 p.477 (2002). 【13】 S. H. Jeong, S. B. Lee, J.-H. Boo, Current Applied Physics Vol.4 p.655 (2004). 【14】 Gabriela .B. Gonzalez, Jerome B. Cohen, Jin-Ha Hwang, Thomas O. Mason, Journal of Applied Physics Vol.89 p.2550 (2001). 【15】Gabriela B. Gonza´ lez, Jerome B. Cohen, Jin-Ha Hwang, and Thomas O. Masona), J. Appl. Phys. Vol.89 p.2550 (2001). 【16】F. Fuchs and F. Bechstedt, Phys. Rev. B Vol.77 p.155107 (2008). 【17】L. Pauling and M. D. Chappell, Z. Krist. Vol.75 p.128 (1930). 【18】 M. J. Hale, J. Z. Sexton, D. L. Winn, A. C. Kummel, J. Chem. Phys. Vol.120 p.12 (2004) 【19】Fan Yang, Jin Ma, Xianjin Feng, Lingyi Kong, Journal of Crystal Growth Vol.310 p.4054 (2008). 【20】J. Narayan, K. Dovidenko, and S. Oktyabrsky, J.Appl. Phys. Vol.84 p.2597 (1998). 【21】Takumi Tomita, Kazuyoshi Yamashita, and Yoshinori Hayafuji, Applied Physics Letters, Vol. 87, 051911 (2005) 【22】Oxford, The basics of crystallography and diffraction 2nd ,(2001) 【23】D. Hull, D. J. Becon ,Introduction to dislocations 3rd , (1984) 【24】Z.X. Mei, Y. Wang, X.L. Du, Z.Q. Zeng, M.J. Ying, H. Zheng, J.F. Jia,Q.K. Xue, Z. Zhang, Journal of Crystal Growth,Vol.289 p.686 (2006). 【25】陳力俊, 材料電子顯微鏡學, 國家實驗研究院儀器科技研究中心 (2006)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/17193-
dc.description.abstractIn this study, the structural characteristics of In2O3 films deposited on (0001) sapphire substrates were analysed by transmission electron microscopy (TEM), x-ray diffraction (XRD), and scanning electron microscope (SEM). In2O3 films were grown by atomic layer deposition (ALD) using TMIn (Trimethylindium) and nitrous oxide (N2O). Some of them were deposited with buffer-layers which were thermally treated at elevated temperature. Based on the results of TEM observations, twin crystals having {11-2} twin planes with atomic displacement along <111> directions. By applying g‧b= 0 invisibility criterion analyses, it was found that screw dislocations were generated primarily from the (222)In2O3/(0001)Al2O3. Buffer-layer annealing treatment was found to enable reduction of dislocation density in the In2O3 film.en_US
dc.description.abstract本論文主要探討生長於(0001)面氧化鋁(sapphire)基板之氧化銦(In2O3)薄膜結構特性。氧化銦薄膜生長採用原子層沈積法(ALD),分別使用三甲基銦(TMIn)與氧化亞氮(N2O)做為銦及氧元素之氣體源,氧化銦結構特性則借重穿透式電子顯微術(TEM)、X光繞射技術(XRD)與掃描式電子顯微術(SEM)加以分析。使用掃描式電子顯微鏡觀察薄膜的表面形態。藉由穿透式電子顯微術觀察並分析得知氧化銦薄膜內具有雙晶之結構缺陷。而雙晶界面及原子移動方向各為{11-2}In2O3及<111>In2O3。此外,本研究應用差排影像消失準則以TEM分析氧化銦內部之各類差排之特性。並採用高解析影像觀察氧化銦雙晶內之晶格排列。比較未成長緩衝層(buffer layer)及生長緩衝層經退火(annealing)之氧化銦樣品之奈米結構特性,由研究結果顯示,在成長緩衝層經退火處理後,氧化銦薄膜內的差排密度明顯減少,結晶品質與表面形態也有顯著的改善。zh_TW
dc.description.tableofcontents目錄 中文摘要…………………………………………………………………I 英文摘要 ………………………………………………………………II 目錄……………………………………………………………………III 圖片目錄 ………………………………………………………………IV 第一章 緒論………………………………………………………… 1 第二章 研究動機與背景 ………………………………………………4 2-1 氧化銦(In2O3)材料 ………………………………………4 2-2 晶格錯配 …………………………………………………9 2-3氧化銦薄膜內部點缺陷的形成 ……………………13 2-4 雙晶結構(Twin structure) ……………………………16 2-5氧化銦生長於氧化鋁基板之差排 ………………………22 第三章 實驗方法與步驟………………………………………………26 3-1 氧化銦薄膜的製備 ………………………………………26 3-2 θ-2θ X-光繞射分析 …………………………………29 3-3 X-光雙晶繞射分析 ………………………………………34 3-4 掃描式電子顯微術分析 …………………………………36 3-5穿隧式電子顯微術分析 …………………………………37 3-5.1 TEM 基本原理 …………………………………38 3-5.2 TEM 樣品的準備 ………………………………45 3-6 高解析穿隧式電子顯微術分析 ………………………48 第四章 實驗結果與討論………………………………………………49 4-1低溫氧化銦緩衝層對薄膜之影響 ……………………………49 4-2氧化銦薄膜之雙晶結構分析 ………………………61 4-3氧化銦內部差排分析 ……………………………………73 第五章 結論與未來方向 …………………………………………78 第六章 參考文獻 …………………………………………………79zh_TW
dc.language.isoen_USzh_TW
dc.publisher物理學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3006201014485300en_US
dc.subjectIn2O3en_US
dc.subject氧化銦zh_TW
dc.subjectTEMen_US
dc.subjectTwin structureen_US
dc.subject微結構zh_TW
dc.subject雙晶zh_TW
dc.subject穿透式電子顯微術zh_TW
dc.title氧化銦薄膜之結構特性研究zh_TW
dc.titleInvestigation on the structural characteristics of In2O3 filmsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:物理學系所
文件中的檔案:

取得全文請前往華藝線上圖書館

Show simple item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.