Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17243
標題: 利用共平面波導探討鎳鐵微結構的鐵磁共振特性
Ferromagnetic resonance of permalloy microstructures detected by coplanar waveguides
作者: 林育正
Lin, Yu-Cheng
關鍵字: 鐵磁共振
ferromagnetic resonance
共平面波導
鎳鐵合金
微波
coplanar waveguide
permalloy
microwave
出版社: 物理學系所
引用: [1] 鄭振東,"實用磁性材料科學",全華科技出版社(1999) [2] C. Kittel," Introduction to Solid State Physics", Eighth Edition, John Wiley & Sons,Inc.(2005) [3] R. C. O''Handley, "Modern magnetic Materials", A WIsley Interscience Publication company (2000) [4] 宛德福、馬隆興,"磁性物理學"電子工業出版社(1999) [5] 金重勳,"磁性技術手冊"磁性技術協會:竹東,民91 [6] A. Belkin, V. Novosad, M. Iavarone, J. Fedor, J. E. Pearson, A.Petrean-Troncalli, and G. Karapetrov, Applied Physic Letters 93, 072510(2008) [7] S. Hankemeier, R. Fromter, N. Mikuszeit, D. Stickler, H. Stillrich, S. Putter, E.Y. Vedmedenko, and H. P. Oepen, Physical Review Letters 103, 147204(2009) [8] N. X. Sun, S. X. Wang, T. J. Silva, Member, and A. B. Kos, IEEE Transactions on Magnetics 38, 1 (2002) [9] S. Chikazumi, "Physics of Ferromagnetism", Oxford, New York (1997) [10] 陳煜仁, "磁性薄膜之鐵磁共振特性測量", 碩士論文, 國立中興大學物理系(2010) [11] C. Bell, S. Milikisyants, M. Huber, and J. Aarts, Physical Review Letters 100,047002 (2008) [12] W. Platow, A. N. Anisimov, G. L. Dunifer, M. Farle, and K. Baberschke, Physical Review B 58, 5611 (1998) [13] X. Liu, J. O. Rantschler, C. Alexander, and G.Zangari, IEEE Transactions on Magnetics 39, 5 (2003) [14] C. Kittel, physical review 73, 2 (1948) [15] C. Kittel, physical review 76, 6 (1949) [16] X. Fan, Y. S. Gui, A. Wirthmann, G. Williams, D. S. Xue, and C. M. Hu, Applied Physics Letters 95, 062511 (2009) [17] S. A. Mass, "Microwave Mixer", Artech House (1992) [18] 宋育泰,"高感度低飄移微波向量偵測器應用在低溫低維度電子系統", 碩士 論文, 國立中興大學物理系 (2006) [19] C. Veyres and V. Fouad Hanna, International Journal of Electronics 48, 47 (1980) [20] T. J. Sliva, C. C. Lee, T. M. Crawford, and C. T. Rogers, Journal of Applied Physics 85, 11 (1999) [21] M. Steiner, C. Pels, and G. Meier, Journal of Applied Physics 95, 11 (2004) [22] K. Ando, and Y. Kajiwara, S. Takahashi and S. Maekawa, K.Takemoto and M. Takatsu, Physical Review B 78, 014413 (2008) [23] Yukio Nozaki, Kentaro Tateishi, and Kimihide Matsuyama, Applied Physics Express 2 033002 (2009) [24] Y. Ding, T. J. Klemmer, and T. M. Crawford, Journal of Applied Physics 96, 5 (2004) [25] D.-H Kim, H.-H Kim, Chun-Yeol You, and Hyungsuk Kim, Journal of Magnetics 16(3), 206-210 (2011) [26] Michael J. Pechan, Chengtao Yu, and Dane Owen, Jordan Katine, Liesl Folks,and Matthew Carey, Journal of Applied Physics 99, 08C702 (2006) [27] S. Jung, B. Watkins, L. DeLong, J. B. Ketterson, and V. Chandrasekhar, Physical Review B 66, 132401 (2002) [28] Sangita S. Kalarickal, Pavol Krivosik, Mingzhong Wu, and Carl E. Patton Journal of Applied Physics 99, 093909 (2006) [29] N. Ross, M. Kostylev, and R. L. Stamps, Journal of Applied Physics 109, 013906 (2011) [30] I. P. Nevirkovets, O. Chernyashevskyy, J. B. Ketterson, V. Metlushko, and B. K.Sarma, Journal of Applied Physics 104, 063920 (2008)
摘要: 本研究是利用接地式共平面波導(Grounded Coplanar Waveguide)來研究鎳鐵合金(permalloy)的微結構在微波下鐵磁共振特性並與鎳鐵合金薄膜比較。我們利用電子束微影將不同微結構製作砷化鎵基板上,微結構的圖案分別為dot array、rod-like array以及nanotube array。dot array樣品的圓直徑為500nm厚175nm間距700nm製作在1mm×2mm的範圍內;nanotube array樣品直徑300nm厚50nm高700nm製作在4mm×4mm範圍內,而對照的鎳鐵合金薄膜樣品厚度為175nm製作在5mm×3mm範圍內。再固定微波訊號造成的交流磁場方向使得與外加磁場垂直,使用向量網路分析儀(Vector Network Analyzer, VNA)提供40 MHz-13.5 GHz的微波訊號,水冷式磁鐵提供±4600Oe的外加磁場,觀察樣品在不同條件下的穿透與反射中振幅與相位的變化訊號。 量測結果發現,發生鐵磁共振吸收的磁場位置會隨著單位面積上permalloy總量的減少而增高;在外加磁場為正負90度時,吸收的位置都最低,隨著角度接近零度而吸收位置開始非線性的升高,而在零度附近的變化最大,可以利用計算出來的模型做擬合。我們利用Kittel’s equation 做擬合計算之後得到旋磁比γ (gyromagnetic ratio)、阻尼因子α (Gilbert damping parameter)、各個方向的去磁因子(Demagnetizing factor)Nx、Ny、Nz。(1) film: γ=156±13GHz/T、α=0.0078±0.0006、Nx=0.084±0.001、Ny=0.832±0.007、Nz=0.084±0.001;(2) dot array: γ=216±160GHz/T、α=0.0334±0.0250、Nx=0.35±0.26、Ny=0.35±0.26、Nz=0.30±0.23 。其他nanotube的樣品由於其單位面積下的permalloy總量太少。無論是在改變不同的頻率或是改變其外加磁場的角度、利用GCPW或是SHORT-GCPW的方式、直接製作在GCPW上或是使用flip-chip的方式作量測,都觀察不到發生鐵磁共振吸收的位置。並且從量測過程中得知目前的測量方法可以達到約萬分之一的解析度。
We report the ferromagnetic resonance (FMR) of permalloy microstructures by using grounded coplanar waveguides (GCPWs). Different patterns, including dot array, rod-like array, and nanotube array, were defined on GaAs substrate by e-beam lithography. The diameter of the dot in the dot array pattern is 500 nm and the center-to-center distance is 700 nm. The nanotube array pattern was made by a special process using a negative electron-beam resist. The diameter, thickness and length of each permalloy nanotube unit were 500 nm, 50 nm, and 700 nm, respectively. We also measure the FMR of a175nm-thick permalloy film deposited on a GaAs substrate for reference. The direction of the AC magnetic field of the microwave signal is perpendicular to that of the applied DC magnetic field. , The magnitudes and phase variations of the transmission and reflection signals in the frequency range from 40 MHz to 13.5 GHz are detected by a vector network analyzer (VNA) at the magnetic field from -4600 Oe to +4600 Oe. At a fixed microwave frequency, the FMR moves to a lower magnetic field nonlinearly as the angle of applied field is varied from 0° to 90°. We deduce the gyromagnetic ratio(γ), the Gilbert damping parameter(α),and the Demagnetizing factor (Nx、Ny、Nz)by fitting the experimental data with Kittel''s equation.The obtained parameters of each sample were: (1) film: γ=156±13GHz/T、α=0.0078±0.0006、Nx=0.084±0.001、Ny=0.832±0.007、Nz=0.084±0.001;(2) dot array: γ=216±160GHz/T、α=0.033±0.025、Nx=0.35±0.26、Ny=0.35±0.26、Nz=0.30±0.23. We are unable to observe the FMR signals for the nanotube sample because the area density of permalloy is too small and the sensitivity of the current method is about 0.01%.
URI: http://hdl.handle.net/11455/17243
其他識別: U0005-2608201200483100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2608201200483100
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.