Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17257
標題: 固態 Sb2Se3 半導體敏化太陽能電池的製作與特性
Fabrication and characteristics of solid-state Sb2Se3 semiconductor-sensitized solar cell
作者: 顏志豪
Yan, Zhi-Hao
關鍵字: 固態半導體敏化太陽能電池
solid-state semiconductor-sensitized solar cell
三硒化二銻
三硫化二銻
電洞傳導材料
Sb2Se3
Sb2S3
hole transport material
CuSCN
出版社: 物理學系所
引用: [1] A. Yella, H. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. Diau, C. Yeh, S. Zakeeruddin, M. Gratzel, Science 334, 629 (2011). [2] A. Tubtimtaea, M. W. Lee, G. J. Wang, Journal of Power Sources 196, 6603 (2011). [3] A Tubtimtae, K. L. Wua, H. Y. Tung, M. W. Lee, G. J. Wang, Electrochemistry Communications 12, 1158 (2010). [4] A. Tubtimtae, M. W. Lee, Thin Solid Films 526, 225 (2012). [5] D. R. Baker, P. V. Kamat, Advanced Functional Materials 19, 805 (2009). [6] C. H. Chang, Y. L. Lee, Applied Physics Letters 91, 053503 (2007). [7] Y. L. Lee, and Y. S. Lo, Advanced Functional Materials 19, 604 (2009). [8] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, Nanoscale 3, 4088 (2011). [9] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012). [10] Y. R. Lazcano, L. Guerrero, O. G. Daza, M. T. S. Nair, and P. K. Nair, Superficies y Vacio 9, 100 (1999). [11] J. Ma, Y. Wang, Y. Wang, P. Peng, J. Lian, X. Duan, Z. Liu, X. Liu, Q. Chen, T. Kim, G. Yao, and W. Zheng, CrystEngComm 13, 2369 (2011). [12] J. Black, E. M. Conwell, L. Seigle, and C. W. Spencer, Journal of Physics and Chemistry of Solids 2, 240 (1957). [13] Y. Rodriguez-Lazcano, Y. Pen ̃a, M. T. S. Nair, and P. K. Nair, Thin Solid Films 493, 77 (2005). [14] R. Vadapoo, S. Krishnan1,2, H. Yilmaz, and C. Marin, Physical Status Solidi B 248, 700 (2011). [15] M. R. Filip, C. E. Patrick, and F. Giustino, Physical Review B 87, 205125 (2013). [16] C. E. Patrick, F. Giustino, Advanced Functional Materials 21, 4663 (2011). [17] N. Guijarro, T. Lutz, T. Lana-Villarreal, F. O’Mahony, R. Go ́mez, and Saif A. Haque, Journal of Physical Chemistry Letters 3, 1351 (2012). [18] E.A. El-Sayad, Journal of Non-Crystalline Solids 354, 3806 (2008). [19] Solar Energy Materials & Solar Cells 92, 371 (2008). [20] Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, Journal of Physical Chemistry C 113, 4254 (2009). [21] M. Y. Versavel, J. A. Haber, Thin Solid Films 515, 7171 (2007). [22] R. Vogel, P. Hoyer, H. Weller, Journal of Physical Chemistry 98, 3183 (1994). [23] S. Nezu, G. Larramona, C. Chone ́, A. Jacob, B. Delatouche, D. Pe ́re ́, C. Moisan, Journal of Physical Chemistry C 114, 6854 (2010). [24] S. J. Moon, Y. Itzhaik, J. H. Yum, S. M. Zakeeruddin, G. Hodes, M. Gra ̈tzel, Journal of Physical Chemistry Letters 1, 1524 (2010). [25] J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, Md. K. Nazeeruddin, M. Gratzel, Nano Letters 10, 2609 (2010). [26] S. H. Im, C. S. Lim, J. A. Chang, Y. H. Lee, N. Maiti, H. J. Kim, Md. K. Nazeeruddin, M. Gratzel, S. I. Seok, Nano Letters 11, 4789 (2011). [27] P. P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. Mo ́ra-Sero ́, J. Bisquert, Journal of Physical Chemistry C 116, 1579 (2012). [28] Auttasit Tubtimtae, 國立中興大學物理學研究所 博士學位論文, (2011). [29] M. Gratzel, Nature 414, 338 (2001). [30] C. Liu, W. Wu, K. Liu, M. Li, G. Hu, and H. Xu, CrystEngComm 14, 6750 (2012). [31] B. O’Regan, and D. T. Schwartz, Chemistry of Materials 10, 1501 (1998). [32] B. O’Regan, F. Lenzmann, R. Muis, and J. Wienke, Chemistry of Materials 14, 5023 (2002). [33] R. G. Gordon, MRS BULLETIN, 52 (2000). [34] L. Kavan and M. Gratzel, Electrochimica Acta 40, 643 (1995). [35] H. J. Snaith and M. Gratzel, Advanced Materials 18, 1910 (2006).
摘要: 本研究主題為固態Sb2Se3半導體敏化太陽能電池,研究分為兩部份:(1) 先製作固態Sb2S3半導體敏化太陽能電池,了解固態太陽能電池的特性,熟悉電池的製作技術。(2) 再進行主題Sb2Se3的研究。固態太陽能電池的製程依序為噴霧熱解法合成blocking-layer,接著spin-coating多孔隙TiO2薄膜,接下來分別以化學浴沉積法及水熱法,在TiO2表面分別鍍上Sb2S3和Sb2Se3半導體做為敏化劑,最後填充CuSCN,在表面形成over layer並濺鍍金電極。完成後的樣品經過穿透光譜分析能隙,表面輪廓儀量測薄膜厚度,冷場發射掃描電子顯微鏡分析斷面結構,功率轉換效率及Power dependent efficiency和外部量子效率的量測,分析太陽能電池的光電轉換效率。表現最佳的Sb2Se3半導體敏化太陽能電池,短路電流為0.799 mA/cm2,開路電壓為0.47 V,填充因子等於52.1 %,功率轉換效率為0.196 %,波長350 nm有最高的外部量子效率16.5 %,在300~450 nm波段有平均8.65 %的外部量子效率。
This thesis presents the solid-state Sb2Se3 semiconductor-sensitized solar cell. The solid-state Sb2S3 semiconductor-sensitized solar cell is also studied and fabricated in our lab. While techniques of the fabrication have been done, the research of Sb2Se3-sensitized solar cells began. The solid-state solar cell is fabricated layer by layer as below. First, the blocking layer is deposited on FTO by hot-spray method. Then, the mesoporous-TiO2 layer is spin-coated above. Sensitizers are deposited on the mesoporous-TiO2. The hole transport material fill into the mesoporous-TiO2 and form over layer above. Finally the Au electrode is sputtered on over layer as the electron collector. The morphology of the cell is analyzed by field emission scanning electron microscope. The transmission spectrum is characterized by UV-visible spectrophotometer. The thickness of the film is measured by the surface profiler. I-V characteristics are measured by Keithley 2400 source meter. The best Sb2Se3-sensitized solar cell yields short circuit current of 0.799 mA/cm2, an open circuit voltage of 0.40 V, a fill factor of 52.1 % and a power conversion efficiency of 0.196 % under full sun. The cell yields an external quantum efficiency of 16.5 % at 350 nm wavelength, and an average external quantum efficiency of 8.65 % over spectrum of 300 to 450 nm.
URI: http://hdl.handle.net/11455/17257
其他識別: U0005-1308201312235000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308201312235000
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.