Please use this identifier to cite or link to this item:
標題: 非晶銦鎵鋅氧薄膜電晶體之低頻雜訊特性
Low-Frequency Noise Properties of Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors
作者: 陳益霖
Chen, Yi-Lin
關鍵字: 銦鎵鋅氧
Thin-Film Transistors
Low-Frequency Noise
Flick noise
Lorentzian noise
出版社: 物理學系所
引用: [1] H. Ohshima and S. Morozumi. IEDM Tech. Dig., 157, 1989. [2] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis. IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001. [3] T. Kaneko, Y. Hosokawa, M. TadauchI, Y. Kita, and H. Andoh. IEEE Trans. Electron Devices, vol. 38, pp. 1086-1093, 1991. [4] Y. Matsueda. Digest of Int. Transistor Conf. 2010, p314, 2010. [5] Sci. Technol. Adv. Mater. 11, 044305 (23pp), 2010. [6] E. E. Hahn. J. Appl. Phys. 22, 855, 1951. [7] A. F. Hebard. Appl. Phys. Lett. 41, 1130, 1982. [8] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe. J. Non-Cryst. Solids 198–200, 165, 1996. [9] M. Yasukawa, H. Hosono, N. Ueda, and H. Kawazoe. Jpn. J. Appl. Phys. 34, L281, 1995. [10] H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, and K. Shimidzu. Appl. Phys. Lett. 67, 2663, 1995. [11] H. Hosono, Y. Yamashita, N. Ueda, H. Kawazoe, and K. Shimidzu. Appl. Phys. Lett. 68, 661, 1996. [12] H. Hosono, H. Maeda, Y. Kameshima, and H. Kawazoe. J. Non-Cryst. Solids 227–230, 804, 1998. [13] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono. Phil. Mag. B81, 501, 2001. [14] H. Hosono, M. Yasukawa, and H. Kawazoe. Journal of Non-Crystalline Solid 203, 334-344, 1996 [15] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys. 45, 4303-4308, 2006. [16] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono. Thin Solid Film 486, 38, 2005. [17] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko. Jpn. J. of Appl. Phys. 48, 010203, 2009. [18] K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, and H.Hosono. Appl. Phys. Lett. 92, 202117, 2008. [19] T. Kamiya, K. Nomura, M. Hirano, and H. Hosono. Phys. Status Solidi c 5, 3098, 2008. [20] T. Kamiya, K. Nomura, and H. Hosono. Phys. Status Solidi a 206, 860, 2009. [21] K. Nomura1, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono. Nature 432, 488-492, 2004. [22] D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y-G. Mo, and J. G. Chung. Appl. Phys. Lett. 92, 192101, 2007. [23] D. Wolf, in Noise in Physical Systems, edited by D. Wolf. p.122, Springer, London, 1978. [24] P. H. Handel. Phys Rev A, 22: 745, 1980. [25] A.Van der Ziel. Noise: Source, Characterization, Measurements. Prentice Hall Inc. Englewood Cliffs, NJ, 1970. [26] N. Weiner. Acta Math. 55: 177, 1930 [27] A.Khintchine. Math. Ann. 109:604, 1934 [28] A. van der Zeil. Noise In Solid State Devices And Circuits. John Wiley& Sons. [29] M. J. Buckingham. Noise In Solid Electronic Devices And Systems. John Wiley& Sons. [30] Ya. M. Blanter, and M. Buttiker. Physics Report 336, 1-166, 2000. [31] J. B. Johnson, Phys. Rev. 32, 97, 1928. [32] H. Nyquist, Phys. Rev. 32, 110, 1928. [33] P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497, 1981. [34] C. D. Motchenbacher, and J. A. Connelly. Low-Noise Electronic System design. John Wiley& Sons. [35] Wong Hei. Microelectronics Reliability, 43: p. 585, 2003. [36] M. E. Welland, and R. H. Koch. Appl. Phys. Lett. 48(11): p.725, 1986. [37] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, andD. M. Tennant. Physical review letters, 52(3): p. 228, 1984. [38] Y. Yamamoto, Lecture on Fundamentals of Noise Processes, Stanford University, Autumn, 2011. [39] C. Surya, and T. Y. Hsiang. Physical review B, 35(12): p. 6343, 1987. [40] S. R. Hofstein. “Field-effect transistor theory” in Field-effect transistors, J. T. Wallmark and H. Johnson, Ed. Englewood. Cliffs, NJ: Prentice-Hall, 1966. [41] F. Crupi, P. Srinivasan, P. Magnone, E. Simoen, C. Pace, D. Misra, and C. Claeys. IEEE Electron Device Lett. 27, 688, 2006. [42] A. L. McWhorter. Semiconductor surface physics. University of Pennsylvania Press, Philadelphia, 1957. [43] L. K. J. Vandamme, Xiaosong Li, and Dominique Rigaud, IEEE Transactions On Electron Devices, Vol. 41, NO. 11, 1994. [44] L. K. J. Vandamme, Solid-State Electron. 23, 317, 1980. [45] Stanford Research Systems Inc. Model SR780 Network Signal Analyzer. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [46] Stanford Research Systems Inc. Model SR570 Low-Noise Current Preamplifier. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [47] Stanford Research Systems Inc. Model SR560 Low-Noise Preamplifier. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [48] 李良箴,博士論文,氮化鎵奈米線的多出雜訊之特性,中興大學物理學系, 2007. [49] S. Joen, S. I. Kim, S. Park, I. Song, J. Park, S. Kim, and C. Kim. IEEE Electron Device Letters, Vol. 31, NO. 10, 2010. [50] C. G. Theodorou, A. Tsormpatzoglou, and C. A. Dimitriadis. IEEE Electron Device Letters, Vol. 32, No. 7, 2011.
摘要: 我們研究利用氧化矽當閘極介電層的非晶銦鎵鋅氧薄膜電晶體之低頻雜訊特性。我們利用自製電池盒來供給閘極電壓(VGS),且利用電流放大器(SR570)內建的電壓源提供汲極的偏壓(VDS)。而電流放大器將汲極電流(IDS)放大後轉換為電壓訊號,再由電壓放大器(SR560)經DC耦合後輸入至網路訊號分析儀(SR780),最後網路訊號分析儀將訊號進行快速傅立葉轉換成功率頻譜密度進而分析。由於非晶銦鎵鋅氧薄膜電晶體的電性對光及氣體非常靈敏,所以量測時都將樣品置放在真空無照光的腔體內。薄膜電晶體樣品的臨界電壓約於-2至-4 V,場效遷移率約為8至10 cm^2/Vs。我們分別在不同的閘極電壓及不同的汲極電壓下量測雜訊,固定閘極電壓時,汲極電壓越大則雜訊強度則越大,其量測的電流範圍值在10^-6到10^-8之間。在功率頻譜密度裡低頻的地方主要的雜訊是1/f雜訊,其形式為:S=AI^2/f^α,數據分析後我們可得α介於1.2至1.6之間。在某些情況下我們可以量測到勞倫茲雜訊,其特徵頻率為15至20赫茲。
We investigate the low-frequency noise properties of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistors (TFTs) with a SiO2 gate dielectric layer. The gate voltage (VGS) is provided by a home-made battery bank. The drain-source voltage (VDS) is given by the internal DC voltage source of the current amplifier (SR570). The drain-source current (IDS) is amplified by SR570 and then fed into a DC couple low-noise voltage preamplifier (SR560). Finally, the time-domain signal is collected by a network signal analyzer (SR780). The power spectral density (PSD) of the noise can be caculated from the data extracted by SR780. Since the electrical properties of a-IGZO TFTs are very sensitive to light and ambient, the samples are placed in a dark vacuum chamber. The threshold voltage of the TFT sample is about -2~-4 V, and field effect mobility is about 8~10 cm^2/Vs. We examine the noise behaviors at various VGS or VDC conditions where IDS is about 10^-6~10^-8 A. At a fixed VGS, we find that the higher VDS is, the larger the noise becomes. The main part of the low-frequency noise is the 1/f-like noise with a PSD of the form:S=AI^2/f^α. The exponent α is between 1.2~1.6. In some conditions, we can observe the Lorentzian noise with a characteristic frequency about 15~20 Hz.
其他識別: U0005-2708201210331300
Appears in Collections:物理學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.