Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17293
標題: Fabrication of electrical device based on gold nanoparticles: The impact of molecule separation and linkage on electrical conduction properties of gold nanoparticle assembly
金奈米粒子元件之製作:自組裝方式與修飾分子長度差異對電性的影響
作者: 江丞偉
Jiang, Cheng-Wei
關鍵字: gold nanoparticles
奈米金粒子
self-assemblely
electric transport
自組裝
電子傳輸
出版社: 奈米科學研究所
引用: [1] Kurzweil, Ray (2005). The Singularity is Near. Penguin Books. ISBN 0-670-03384-7. [2]Cui, Y., Q. Wei, et al. (2001). "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species." Science 293(5533): 1289. [3]Lyon, L., M. Musick, et al. (1998). "Colloidal Au-enhanced surface plasmon resonance immunosensing." Anal. Chem 70(24): 5177-5183. [4]Patolsky, F., G. Zheng, et al. (2006). "Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species." Nature protocols 1(4): 1711-1724. [5]Lyon, L., M. Musick, et al. (1999). "Surface plasmon resonance of colloidal Au-modified gold films." Sensors and Actuators B: Chemical 54(1-2): 118-124. [6]Huang, L., G. Reekmans, et al. (2005). "Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays." Biosensors and Bioelectronics 21(3): 483-490. [7]Aravamudhan, S., A. Kumar, et al. (2007). "Sensitive estimation of total cholesterol in blood using Au nanowires based micro-fluidic platform." Biosensors and Bioelectronics 22(9-10): 2289-2294. [8]Chang, T., C. Tsai, et al. (2007). "Ultrasensitive electrical detection of protein using nanogap electrodes and nanoparticle-based DNA amplification." Biosensors and Bioelectronics 22(12): 3139-3145. [9]Huie, J. (2003). "Guided molecular self-assembly: a review of recent efforts." Smart Materials and Structures 12: 264. [10]Liu, S., T. Zhu, et al. (2002). "Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array." Physical Chemistry Chemical Physics 4(24): 6059-6062. [11]Ramos, A., H. Morgan, et al. (1998). "AC electrokinetics: a review of forces in microelectrode structures." Journal of Physics D: Applied Physics 31: 2338. [12]Hermanson, K., S. Lumsdon, et al. (2001). "Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions." Science 294(5544): 1082. [13]Kretschmer, R. and W. Fritzsche (2004). "Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis." Langmuir 20(26): 11797-11801. [14]Gierhart, B., D. Howitt, et al. (2007). "Frequency dependence of gold nanoparticle superassembly by dielectrophoresis." Langmuir 23(24): 12450-12456. [15]Kumar, S., Y. Seo, et al. (2009). "Manipulation and trapping of semiconducting ZnO nanoparticles into nanogap electrodes by dielectrophoresis technique." Applied Physics Letters 94: 153104. [16]Zhai, J., Y. Wang, et al. (2009). "Rapid fabrication of Au nanoparticle films with the aid of centrifugal force." Nanotechnology 20: 055609. [17]Sato, T., H. Ahmed, et al. (1997). "Single electron transistor using a molecularly linked gold colloidal particle chain." Journal of Applied Physics 82: 696. [18]Janes, D., V. Kolagunta, et al. (1995). "Electronic conduction through 2D arrays of nanometer diameter metal clusters." Superlattices and Microstructures 18(4): 275-282. [19]Trudeau, P., A. Orozco, et al. (2002). "Competitive transport and percolation in disordered arrays of molecularly-linked Au nanoparticles." The Journal of Chemical Physics 117: 3978. [20]Trudeau, P., A. Escorcia, et al. (2003). "Variable single electron charging energies and percolation effects in molecularly linked nanoparticle films." The Journal of Chemical Physics 119: 5267. [21]Andres, R., J. Bielefeld, et al. (1996). "Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters." Science 273(5282): 1690. [22]Pekola, J., K. Hirvi, et al. (1994). "Thermometry by arrays of tunnel junctions." Physical review letters 73(21): 2903-2906. [23]Zabet-Khosousi, A., P. Trudeau, et al. (2006). "Metal to insulator transition in films of molecularly linked gold nanoparticles." Physical review letters 96(15): 156403. [24]Zabet-Khosousi, A. and A. Dhirani (2008). "Charge transport in nanoparticle assemblies." Chem. Rev 108(10): 4072-4124. [25]Snow, A. and H. Wohltjen (1998). "Size-induced metal to semiconductor transition in a stabilized gold cluster ensemble." Chem. Mater 10(4): 947-949. [26]Kim, D., E. Koyama, et al. (2007). "Au/SiO2 nanocomposite film substrates with a high number density of Au nanoparticles for molecular conductance measurement." Nanotechnology 18: 205501. [27]Reed, M., J. Chen, et al. (2001). "Molecular random access memory cell." Applied Physics Letters 78: 3735. [28]Yonezawa, T. and T. Kunitake (1999). "Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization." Colloids and Surfaces A: Physicochemical and Engineering Aspects 149(1-3): 193-199. [29]Slot, J. and H. Geuze (1985). "A new method of preparing gold probes for multiple-labeling cytochemistry." European journal of cell biology 38(1): 87. [30] 謝婭暄,金奈米粒子生物感測元件的製作 中興大學物理學系所(2008) [31] 楊素卿,利用離心法製作金奈米顆粒薄膜探討其形成與顆粒間交互作用的關係 國立東華大學應用物理研究所 (2009) [32] 郭清癸,金屬奈米粒子的製造 物理雙月刊(廿三卷六期)2001 年 12 月 [33] 楊正義, 金屬、半導體奈米晶體在生物檢測及分析上的應用 物理雙月刊(廿三卷六期)2001 年12 月 [34] 李思毅,李佳穎,曾俊元 奈米材料的製程及其潛在的應用 物理雙月刊(廿六卷三期)2004 年6 月
摘要: 本論文以兩方面研究金奈米粒子元件:第一部分利用自組裝方式製作奈米金粒子元件,利用微流道、介電泳、離心鋪排三種方式進行奈米金粒子的自組裝。我們比較討論了各種自組裝法的薄膜形貌與導電性。離心法可以得到均勻且緊密排列的奈米金粒子薄膜。 第二部分探討奈米金粒子表面進行不同鍊長分子修飾(3、6、8、11個碳鍊鍊長)對金粒子膜導電性的影響。由電阻的溫度變化,分子修飾鍊長爲短(3個碳鍊)鍊的金粒子膜,其特性趨近於金屬性;而長(6,8,及11個碳鍊)鍊的金粒子膜,其特性趨近於絕緣體。絕緣體的電阻溫度關係符合thermal activation行爲。
This thesis presents experimental studies on nano-devices based on nanoparticles on two aspects: the processes of gold nanoparticles (AuNPs) self-assembled into nano-gaped electrodes to form nano-devices, and the electrical conduction properties for the gold nanoparticles modified by molecules of various lengths (with 3-carbon chain, 6-carbon chain, 8-carbon chain, 11-carbon chain). In the first aspect, microfluidic-channel confinement, dielectrophoresis method, and centrifugal method were employed for AuNP self-assembly. The comparison in morphology and electrical conduction of the AuNP assemblies from three methods is addressed. The centrifugal method may yield the AuNPs deposited in a closed-packed and single-layered structure. In the second aspect, the impact of AuNP-modification molecules on the electrical conduction of the AuNP assemblies obtained by the centrifugal method was studied. From the temperature-dependent resistance, the AuNP assemblies modified by short (3) carbon-chain molecules are metallic, while those modified by long (6,8, and 11) carbon-chain molecules are insulating. For the insulators, the resistance v.s. temperature curve exhibits a thermal activation behavior.
URI: http://hdl.handle.net/11455/17293
其他識別: U0005-0608201010253900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0608201010253900
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.