Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17301
標題: 高溫超導釔鋇銅氧不同厚度微橋的約瑟芬效應
Josephson Effects in High-Tc YBCO Variable-Thickness Bridges
作者: 詹逢駿
Jhan, Fong-Jyun
關鍵字: Focused Ion Beam
聚焦離子束
VTB
Josephson junctions
DC SQUID
約瑟芬接面
超導量子干涉元件
出版社: 奈米科學研究所
引用: [1] B. D. Josephson, Physics Letters, 1, 251-253 (1962) [2] W. F. Avrin and M.B. Simmonds,IEEE.Tran.Mag.27,3359(1991) [3] K. Takeda, H. Mori, A. Yamaguchi, H. Ishimoto, T. Nakamura, S. Kuriki, T.Hozumi, and S. Ohkoshi,Rev. Sci. Instrum. 79, 033909 (2008) [4] S. H. Liao, S. C. Hsu, C. C. Lin, H. E. Horng, J. C. Chen, M. J. Chen, C. H. Wu, and H. C. Yang, Supercon.Sci.Technol.16,1426(2004) [5] K. Char, M. S. Colclough, S. M. Garrison, N. Newman, and G. Zaharchuk, Appl.Phys.Lett.59, 733(1991) [6] C. H. Wu, M. J. Chen, J. C. Chen, K. L. Chen, and H. C. Yang, Rev. Sci. Instrum. 77, 033901 (2006) [7] Wang, Wan; Yamazaki, Masashi; Lee, Kiejin; Iguchi, Ienari, Phys. Rev. B 60, 4272–4276 (1999) [8] N. Bergeal,a X. Grison, and J. Lesueur,Appl.Phys.Lett.87, 102502(2005) [9] R. Frielinghaus, I. E. Batov, M. Weides, H. Kohlstedt, R. Calarco, and Th. Schapers, Appl. Phys. Lett. 96, 132504 (2010) [10] J.-P. Cleuziou, W. Wwensdorfer, V. Bouchiat, T. Ondarc﹐ and M. Monthioux, Nature Nanotechnology 1, 53 (2006) [11] V. N. Gubanov, V. P. Koshelets, and G. A. Ovsyannikov, JETP. Lett. 21, 226,(1975) [12] G. Burnell, D.-J. Kang, H. N. Lee, S. H. Moon, B. Oh, and M. G. Blamire, Appl. Phys. Lett. 79, 3464 (2001) [13] G. Burnell, D-J Kang, D A Ansell, H N Lee, S H Moon, B Oh, E J Tarte1 and M G Blamire1,,Appl. Phys. Lett. 81, 102(2002) [14] Sidney Shapiro, Phys. Rev. Lett. 11, 80–82 (1963) [15] Antonio Barone, “Physics and Applications of the Josephson Effect”, Wiley-VCH.(1982) [16] Sidney Shapiro, Andrer. Janus, and Sandor Holly,Rev. Mod. Phys. 36, 223–225 (1964) [17] ,Neeraj Khare, “Handbook of High-Temperature Superconductor Electronics”, Marcel Dekker, Inc (2003) [18] 陳啟東,淺談微影蝕刻技術 物理雙月刊 (21期4卷)1998年8月 [19] J.Clarke and A.I.Braginski, “The SQUID Handbook, vol.I Fundamentals and Technology of SQUIDs and SQUIDs System”, Wiley-VCH (2006) [20] Zheng Cui, “Nanofabrication”, Springer (2008) [21] Lucille A. Giannuzzi and Fred A. Stevie, “Introduction to Focused Ion Beams”, Springer (2004) [22] NAN YAO, “Focused Ion Beams systems”, Cambridge Univ Pr (2007) [23] M. Sirena, N. Bergeal, and J. Lesueur, J. Appl. Phys. 101, 123925 (2007) [24] K. A. Delinyz and A. W. Kleinsasser,Sci. Technol., 9, 227, (1996) [25] W. E. Booij , A. J. Pauza, E. J. Tarte, D. F. Moore ,and M. G. Blamire, Phys. Rev. B 55, 14600–14609 (1997) [26] Soon-Gul Lee, Sung-Hak Hong, Won Nam Kang, and Dong Ho Kim,J. Appl. Phys. 105, 013924 (2009) [27] K. K. Likharev, Rev. Mod. Phys. 51, 101–159 (1979) [28] P. Russer, J.Appl. Phys,43,2008(1972) [29] R. S. Gonnelli, A. Calzolari, D. Daghero, and G. A. Ummarino,Phys. Rev. Lett. 87, 097001 (2001) [30] K. Enpuku, Y. Shimomura, and T. Kisu, J. Appl. Phys. 73, 7929 (1993)
摘要: 本論文中,我們將討論利用控制連結區域(link region)的不同厚度來製作高溫超導約瑟芬接面與直流式超導量子干涉元件。利用聚焦離子束(Focused Ion Beam)製作奈米尺度下不同厚度微橋(Variable Thickness Bridge-VTB)的約瑟芬接面,若將接面厚度控制至奈米尺度下,微橋將呈現弱連結效應及產生穿遂效應。 我們利用聚焦離子束在厚度150 nm、寬度1 - 3 μm的釔鋇銅氧(YBa2Cu3O7-X) 微橋上進行局部性的離子蝕刻,將接面厚度控制於40 - 90 nm,若微橋超導性受到破壞,我們將進行一次退火。接面厚度介於70-80 nm時,77 K下量測到的電壓-電流曲線,呈現近似電阻分路結模型(R.S.J. model) ,且臨界電流遵守 Ic ∝ (1-T/Tc)α ,在靠近Tc 時,α=2;隨著溫度降低,α=1與Ic為線性化關係,呈現出超導-金屬-超導的接面特性。照射3.02 - 14.64 GHz的微波時,亦成功量測到定電壓台階曲線 (Shapiro step),且隨著功率增加其台階電流寬度以類似貝索函數(Bessel-function)趨勢受抑制。於70 K下,DC SQUID也成功量測出磁通-電壓響應曲線,其波峰到波谷的振幅(Vp.p)約1.5 μV。
This work introduces the method of variable thickness bridges (VTB) for fabricating high-Tc Josephson junctions and DC SQUIDs. Focused Ion Beam (FIB) is used to control the thickness of the junction under a nanometer. The region that links the two electrodes exhibits the weak link effect. YBa2Cu3O7-X (YBCO) VTBs were fabricated with widths of 1 - 3 μm and a thickness of 150 nm using the standard techniques of photolithography and Ar+ ion milling. The thickness of the junctions was maintained between 40 and 90 nm. When the thickness of the junction was close to 80 nm, the voltage-current curve revealed RSJ-like behavior at 77 K. The critical current vs. temperature curve satisfies the general equation, Ic∝(1-T/Tc)α, with α=2 near Tc and 1 at low temperature. Shapiro steps were observed in a single junction at frequencies from 3.02 to 14.64 GHz. The widths of the current steps revealed oscillatory behavior with irradiation intensities. The characteristics of DC SQUID magnetometer were also measured. The peak-to-peak voltage swing is about 1.5 μV for a single SQUID at 70 K.
URI: http://hdl.handle.net/11455/17301
其他識別: U0005-1008201115310000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008201115310000
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.