Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17311
標題: 以SnO2光電極製作Bi2S3量子點液態敏化太陽電池之效能探討
Bi2S3 liquid-junction semiconductor-sensitized SnO2 solar cells
作者: 林祐成
Lin, Yu-Cheng
關鍵字: 硫化鉍
SnO2
二氧化錫
量子點
太陽電池
Bi2S3
quantum dot
solar cell
出版社: 奈米科學研究所
引用: [1] B. O''regan, M. Gratzel, Nature. 353, 737 (1991) [2] Md. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloin, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, Journal of the American Chemical Society. 127, 16835 (2005). [3] M. Gratzel, Nature. 414, 338 (2001) [4] Raul Suarez, P. K. Nair, and Prashant V. Kamat, Langmuir. 14, 3236 (1998) [5] S.O.Kasap, Optoelectronics and Photonics: Principles and Practices. (1999) [6] L. M. Peter, Journal of Electroanalytical Chemistry. 98,49 (1979) [7] C.E. Patrick, F. Giustino, Advanced Functional Materials. 21, 4663 (2011) [8] Laurence M. Peter, K. G. Upul Wijayantha, D. Jason Riley, Jonathan P. Waggett, The Journal of Physical Chemistry B. 107, 8378 (2003) [9] B. Pejova, Materials Research Bulletin. 43, 2887 (2008) [10] H. Spanggaard, F. C. Krebs, Solar Energy Materials & Solar Cells.83,125 (2004) [11] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, Md. K. Nazeeruddin, E. W. G. Diau, C.Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Science. 334, 629 (2011) [12] Y. Luo, D. Li and Qi. Meng, Advanced Materials. 21, 4647 (2009) [13] 陳佳靜, 國立中興大學物理所碩士論文 (2008) [14] T. Zdanowicza, T. Rodziewiczb, M. Zabkowska-Waclawek, Solar Energy Materials & Solar Cells. 8743, 757(2005). [15] ORIEL INSTRUMENTS [16] 徐嘉鴻 物理雙月刊 26卷2期395 (2004) [17] S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung, Journal of Photochemistry and Photobiology A: Chemistry. 179, 135 (2006) [18] R. D. Schaller, V. I. Klimov, Physical Review Letters. 92, 186601 (2004) [19] S. M. Pawar, B.S. Pawar, J. H. Kim, Oh-Shim Joo, C.D. Lokhande, Current Applied physics. 11, 117 (2011) [20] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J. E. Moser, M. Gratzel, N.G. Park, Scientific Reports. 2, 591 (2012). [21] G. Larramona, C. Chone, A. Jacob, D. Sakakura, B. Delatouche, D. Pere, X. Cieren, M. Nagino, R. Bayon, Chemistry of Materials. 18, 1688 (2006) [22] N. Guijarro, T. Lana-Villarreal, I. Mora-Sero, J. Bisquert, R. Gomez, The Journal of Physical Chemistry. C. 113, 4208 (2009). [23] I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, Journal of the American Chemical Society. 128, 2385 (2006). [24] Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, Journal of Physical Chemistry. C. 113, 4254 (2009) [25] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G. J. Wang, Electrochemistry Communications. 12, 1158 (2010). [26] Y.R.Ho, M.Y.Lee, Electrochemistry Communications. 26, 48 (2013) [27] E. Pineda, Ma. E. Nicho, P.K. Nair, H. Hu, Solar Energy. 86, 1017 (2012) [28] Y. L. Lee, Y. S. Lo, Advanced Functional Materials. 19, 604 (2009) [29] S. Gorer, G. Hodes, The Journal of Physical Chemistry. 98, 5338 (1994)
摘要: Bi2S3的能隙為1.4 eV,是適合發展太陽電池的材料之一,本實驗使用SnO2代替TiO2作為QDSSC 光電極,並以SILAR (successive ionic layer adsorption and reaction)法在光電極上合成半導體量子點Bi2S3做成敏化太陽電池,以Au 為對電極,在100 %太陽光下量測得到轉換效率為0.20 %,開路電壓為0.16 V,短路電流為4.20 mA/cm2,FF (填充因子)為29.2 %。而在10.9 %太陽光下測量得到電池效率為0.27 %,開路電壓為0.12 V,短路電流為0.90 mA/cm2,若換算成100 %太陽光,則相當於8.26 mA/cm2;另外我們也對於Bi2S3量子點特性進行穿透光譜、XRD、TEM等量測,得到能隙大小為1.62 eV,粒徑大小約為15 nm;最後對Bi2S3 QDSSC 做IPCE (incident photon to current efficiency)量測及APCE (absorbed photon to current efficiency)計算,得到APCE 光譜涵蓋350 nm ~ 900 nm,最高為64 %出現在490 nm 處,代表此材料擁有高的光電轉換效能,適合拿來做太陽電池的吸光材料。
The band gap of bismuth sulphide (Bi2S3) is 1.4 eV, which is a promising candidate for semiconductor sensitized solar cell material. The successive ionic layer adsorption and reaction (SILAR) method was used to grow Bi2S3 quantum dots (QDs) on nanocrystalline SnO2 for fabrication of quantum-dot sensitized solar cells (QDSSCs). The photovoltaic results that we obtained using Au counterelectrode under one sun illumination are: short circuit current Jsc = 4.20 mA/cm2, open circuit voltage Voc = 0.16 V, fill factor FF = 29.2 % and power conversion efficiency 0.20 %. The efficiency increases to 0.23 % and 0.27 % under illumination of 0.5 and 0.1 sun, respectively. The short circuit current at 0.1 sun is 0.90 mA/cm2, which is equivalent 8.26 mA/cm2 at 1sun.We used XRD,TEM and UV-vis spectrometer to analyze the Bi2S3 QDs. The energy gap was found to be 1.62 eV and the average particle size is 15 nm. Finally, we measured the IPCE spectrum (incident photon to current efficiency) and calculated the APCE spectrum (absorbed photon to current efficiency) for Bi2S3 QDSSC.The APCE covered the range of 350 nm – 900 nm, and with a maximal APCE of 64 % at 490 nm. The results indicate that Bi2S3 would be a potential material for solar cells.
URI: http://hdl.handle.net/11455/17311
其他識別: U0005-1308201312212800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308201312212800
Appears in Collections:奈米科學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.