Please use this identifier to cite or link to this item:
標題: 鎳鐵微結構的鐵磁共振特性研究:對外加磁場方向的影響
Ferromagnetic resonance of permalloy microstructures : dependence of direction of external magnetic fields
作者: 闕成昌
Chueh, Cheng-Chang
關鍵字: 鐵磁共振
Ferromagnetic resonance
出版社: 奈米科學研究所
引用: [1] J. Kunes and V. Kambersky, Physical Review B 65, 212411 (2002) [2] M. Fahnle and D. Steiauf, Physical Review B 72, 064450 (2005) [3] A. Rebei and M. Simionato, Physical Review B 71, 174415 (2005) [4] J. Ho, F. Khanna, and B. Choi, Physical Review Letters 92, 097601 (2004) [5] 鄭振東, "實用磁性材料科學", 全華科技出版社 (1999) [6] C. Kittel, "Introduction to Solid State Physics", Eighth Edition, John Wiley &Sons, Inc. (2005) [7] R. C. O''Handley, "Modern Magnetic Materials", A Wisley Interscience Publication company (2000) [8] 鄭振東, "實用磁性材料學", 全華科技出版社 (1999) [9] 宛德福, 馬隆興, "磁性物理學", 電子工業出版社 (1999) [10] 金重勳, "磁性技術手冊" 磁性技術協會:竹東, 民91 [11] S. Chikazumi, "Physics of Ferromagnetism", Oxford, New York (1997) [12] N. X. Sun, S. X. Wang, T. J. Silva, Member, and A. B. Kos, IEEE Transactions on Magnetics 38, 1 (2002) [13] L. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,” Physik Z. Sowjetunion, 8, 153 (1935) [14] T. L. Gilbert, “A Lagrangian formulation of the gyromagnetic equation of the magnetization field,” Physical Review B, 100, 1243 (1955) [15] C. Bell, S. Milikisyants, M. Huber, and J. Aarts, Physical Review Letters 100,047002 (2008) [16] W. Platow, A. N. Anisimov, G. L. Dunifer, M. Farle, and K. Baberschke, Physical Review B 58, 5611 (1998) [17] X. Liu, J. O. Rantschler, C. Alexander, and G. Zangari, IEEE Transactions on Magnetics 39, 5 (2003) [18] S. Ingvarsson,L. Ritchie, X.Y, Liu, G. Xiao, J. C. Slonczewski, P. L. Trouilloud, and R. H. Koch, Physical Review B 66, 214416 (2002) [19] k. Lenz, Physical Review B 73, 144424 (2006) [20] G. V. Skrotskii, Soviet Physics Uspekhi 27 977 (1984) [21] L. Landau and E. Lifshitz, Physik Z. Sowjetunion 8,153 (1935) [23] T. L. Gilbert, Ph.D. dissertation, Illinois institute of technology, (1956) [23] B. M. L, Philosophical Transactions of the Royal Society A 369, 1280–1300 (2011) [24] G. Bertotti, I.D. Mayergoyz, C. Serpico, Physica B 306 102–105 (2001) [25] L. Baňas, Numerical Analysis and Its Applications Lecture Notes in Computer Science, 3401, pp 158-165 (2005) [26] T. L. Gilbert, IEEE Transactions on Magnetics, 40, 6 (2004) [27] S. Ingvarsson, Applied Physics Letters 85,4995 (2004) [28] X. Liu and G. Xiao, Journal of Applied Physics 94, 6218 (2003) [29] M. Tondra, J. M. Daughton, C. Nordman, D. Wang, and J. Taylor, Journal of Applied Physics 87, 4679 (2000) [30] B. D. Schrag and G. Xiao, Applied Physics Letters 82, 3272 (2003) [31] B. Dieny, Journal of Magnetism and Magnetic Materials 136, 335 (1994) [32] J. M. L. Beaujour and A. D. Kent, Journal of Applied Physics 103, 07B519 (2008) [33] J. Z. Sun, Physical Review B 62, 570 (2000) [34] C. Scheck, L. cheng, I. Barsukov, Z. Frait, and W. E. Bailey, Physical Review Letters 98, 117601 (2007) [35] C. Bell, S. Milikisyants, M. Huber, and J. Aarts, Physical Review Letters 100, 047002 (2008) [36] C. Kittel, physical review 73, 2 (1948) [37] C. Kittel, physical review 76, 6 (1949) [38] X. Fan, Y. S. Gui, A. Wirthmann, G. Williams, D. S. Xue, and C. M. Hu, Applied Physics Letters 95, 062511 (2009) [39] S. S. Kalarickal, P. Krivosik, M. Wu, and C. E. Patton, Journal of Applied Physics 99, 093909 (2006) [40] W. Platow, A. N. Anisimov, G. L. Dunifer, M. Farle, and K. Baberschke, Physical Review B, 58, 9 (1998) [41] K. Ando, and Y. Kajiwara, Physical Review B 78, 014413 (2008) [42] 林育正, "利用共平面波導探討鎳鐵微結構的鐵磁共振特性", 碩士論文, 國立中興大學物理系 (2011) [43] A. Azevedo, A. B. Oliveira, F. M. de Aguiar, and S. M. Rezende, Physical Review B, 62, 9 (2000)
摘要: 本研究是將鎳鐵微結構覆晶在接地式共平面波導上研究外加磁場方向對鐵磁共振的影響並對鎳鐵薄膜比較。利用電子束微影在3 mm × 2 mm砷化鎵基板上製作微結構圖案,微結構圖案分別是點陣列圖案和棒狀陣列圖案。無微結構樣品為在3 mm × 2 mm砷化鎵基板上蒸鍍30 nm厚Ni80Fe20薄膜,點陣列圖案的樣品其圓直徑為500 nm圓間距為200nm,Ni80Fe20膜厚175nm寫在2 mm × 1 mm的基板上;棒狀陣列樣品則是在2 mm × 1 mm的基板上製作棒長1 um寬600 nm間距600 nm陣列,薄膜厚度為30 nm。實驗量測方法為使用向量網路分析儀的微波頻率1 ~ 13 GHz與水冷式電磁鐵提供正負約7900 Oe的外加磁場,在固定外加磁場與樣品表面法線方向夾角為90度時,改變微波頻率1 ~ 13 GHz,及固定一微波頻率並改變外加磁場方向(qH = 90°~ -90°)兩種狀況下,量測微波訊號經過樣品後之穿透與反射訊號之振幅與相位變化,探討鐵磁共振相關特性。 量測結果發現,微波頻率遞增共振磁場也隨之增加;固定微波頻率時,外加磁場方向在正負90度有最小的共振磁場,隨著角度的遞減,共振磁場逐漸增加並且增加的幅度越來越大。我們使用Kittel’s equation作擬合計算出旋磁比r(gyromagnetic ratio)、各個方向的去磁因子(Demagnetizing factor)Nx、Ny、Nz、阻尼因子a(damping parameter)。微結構圖案和薄膜厚度會影響共振磁場的大小。
We report the ferromagnetic resonance of permalloy microstructures. The chip with permalloy microstructures are flipped and attached on a ceramic substrate with a grounded coplanar waveguide. We define different microstructure patterns, including dot array and rod-like array, on GaAs substrates by e-beam lithography. Three kinds of samples were investigated. The first one is a bare 30 nm thick permalloy thin film on a 3 mm × 2 mm GaAs substrate, the second one is a permalloy dot array consisted of 500-nm-diameter dots with pitch of 200 nm and thickness of 175 nm on a 2 mm × 1 mm GaAs substrate, and the third one is a rod-like permalloy array consisted of 1-um-long, 600-nm-wide rod-likes with pitch of 600 nm and thickness of 30 nm on a 2 mm × 1 mm GaAs substrate. We measure the ferromagnetic resonance characteristics of samples by applying the microwave signal in the frequency range from 40 MHz to 13.5 GHz and a magnetic field from -7900 Oe to +7900 Oe. The transmission and reflection signals are measured by a vector network analyzer (VNA). The measurement data reveal that the magnetic field of the FMR increases as the microwave frequency increases. At the same microwave frequency, the field of FMR evolves to lower field as the angle of the applied field is varied from 0° to 90°. We found that the variation of the field of FMR is the greatest as the angle approach to zero for these samples. We can deduce the gyromagnetic ratio(r), the Gilbert damping parameter(a), and the Demagnetizing factor(Nx、Ny、Nz) by using Kittel''s equation.
其他識別: U0005-2008201315195200
Appears in Collections:奈米科學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.