Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17725
標題: 逐步迴歸, 真實性檢驗與預測力優劣檢定法之探討-以台灣加權指數為例
An Empirical Study on Stepwise Regression, Reality Check and Superior Predictive Ability-Evidence from TAIEX
作者: 李友嘉
Lee, Yu-Chia
關鍵字: reality check
真實性檢驗
test for superior predictive ability
variable selection
prediction
預測力優劣檢定法
變數選取
預測
定態拔靴法
出版社: 應用數學系所
引用: [1] Black, F., and Scholes, M. (1973), The pricing of options and corporate liabilities. Journal of Political Economy, 3, 637-659. [2] Brock, W., J. Lakonishok, and B. LeBaron (1992), Simple Technical Trading Rules and the Stochastic Properties of Stock Returns, Jouranl of Finance, 47, 1731-1764. [3] Chatfield, C. (1995), Model Uncertainty, Data Mining and Statistical Inference, Journal of the Royal Statistical Society, Series A, 158, 419-466. [4] Cowles, A. (1933), Can Stock Market Forecasters Forecast?, Econometrica,1, 309-324. [5] Cox, D. R. (1982), Statistical Significance Test, British Journal of Clinical Pharmacology, 14, 325-331. [6] Dufour, J.-M., E. Ghysels, and A. Hall (1994),Generalized Predictive Tests and Structural Change Analysis in Econometrics, International Economic Review, 35, 199-229. [7] Efron, B. F. (1979), Bootstrap Methods: Another Look at the Jackknife, Annals of Statistics, 7, 1-26. [8] Hansen, P. R. (2005), A Test for Superior Predictive Ability, Journal of Business & Economic Statistics, 23, 365-380. [9] Hoover, K. D., and S. J. Perez (1998), Data Mining Reconsidered: Encompassing and the General-to Specific Appraoch to Specification Search, UC Davis Department of Economics Discussion Paper. [10] Kabaila, P. (1995), The Effect of Model Selection on Confidence Regions and Prediction Regions, Econometric Theory, 11, 537-549. [11] Kuensch, H. R. (1989), The Jackknife and Bootstrap fo General Stationary Observations, Annals of Statistics, 17,1217-1241. [12] Leamer, E. (1978), Specification Searaches: Ad Hoc Inference with Nonexperimental Data, New York: Wiley. [13] Leamer, E. (1983), Let’s Take the Con out of Econometrics, American Economic Review, 73, 31-43. [14] Liu, R. Y., and K. Singh (1992), Moving Blocks Jackknife and Bootstrap Capture Weak Dependence ,New York: Wiley. [15] Lo, A., and C. Mackinley (1990), Dtat Snooping Biases in Tests of Financial Asset Pricing Models, Review of Financial Studies, 3, 431-468. [16] Lovell, M. C. (1983), Data mining, Review of Economics and Statistics, 45, 1-12. [17] Mayer, T. (1980), Economics as a hard science: Realistic Goal or Wishful Thinking, Economic Inquiry, 18, 165-178. [18] Miller, Jr., R. G. (1981), Simultaneous Statistical Inference, New York: Springer-Verlag. [19] Politis, N. D., and J. P. Romano (1994), The Stationary Bootstrap, Journal of American Statistical Association, 89, 1303-1313. [20] Potscher, B. (1991), Effects of Model Selection on Inference, Econometric Theory, 7, 163-185. [21] Sullivan, Ryan, A. Timmermann and H. White (1999), Datasnooping, technical trading rule performance, and the Bootstrap, Journal of Finance, 5, 1647-1692. [22] White, H. (2000), A reality check for data snooping, Econometrica, 68, 1097-1126. [23] 吳慧娟(2004), 情緒指標在期貨市場的應用, 碩士論文, 輔仁大學金融研 究所。 [24] 賴宏維(2004), 技術分析之資料窺視效應-台灣股市之實證研究, 碩士論 文, 雲林科技大學財務金融系碩士研究所。 [25] 石馥瑄(2006), 台指選擇權波動率與加權股價指數報酬率之關係, 碩士論 文, 中興大學應用數學系研究所。 [26] 寰宇財務公司(2005), 成交量與未平倉量分析, 寰宇財務公司。
摘要: 股票市場是個非常複雜且難以預測的系統, 可是人們總是想用過去的資料對未來做預測。本文利用一些常用的技術分析-動能(momentum), 趨勢(trend line), 相對強度指標(relative strength index), 移動平均(moving average), 以及衍生性金融商品所產生的一些情緒指標(sentiment indicator)-波動率指數(volatility index, VIX), 台指選擇權賣權與買權未平倉 量比例(put call ratio of open interest, PCOI), 台指選擇權賣權與買權成交量比例(put call ratio of volume, PCVOL) 當作迴歸的模型的變數。且利用White (2000) 真實性檢驗(reality check, RC), Hansen (2005) 預測力優劣檢定法(test for superior predictive ability, SPA) 與逐步迴歸等三種方法選取比較有用的變數。希望在眾多的變數中能找到比較可以對未來做預測, 進一步提供較正確的資訊。根據本文數據的結果, 發現情緒指標對於預測能力比較有效。
The return is very complicated and hard to predict in the financial market. This article uses common technical analysis-momentum, trend line, relative strength index, moving average and some sentiment indicators -volatility index, put call ratio of open interest, put call ratio of volume to be variables of regression model. Moreover, we apply reality check (White, 2000), test for superior predictive ability (Hansen, 2005) and stepwise regression to select useful variables. We hope to find useful variables and provide more correct infromation in the financial markets. Sentiment indicators are useful in this article.
URI: http://hdl.handle.net/11455/17725
其他識別: U0005-0407200714343600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0407200714343600
Appears in Collections:應用數學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.