Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17923
標題: 蜻蜓翅膀形變:流體效應與振動調控
Wing deformation of dragonfly : Aerodynamic effects and flapping
作者: 蔡峰岳
Tsai, Feng-Yueh
關鍵字: 薄翅蜻蜓
dragonfly Pantala flavescens
翅痣
翅膀形變
高速攝影術
流場可視化
生物力學
空氣動力學
材料力學
pterostigma
wing deformation
high-speed videography
flow visualization
biomechanics
aerodynamics
mechanics of materials
出版社: 生物物理學研究所
引用: Bomphrey, R. J., Taylor, G. K., Lawson, N. J. and Thomas, A. L. (2006). Digital particle image velocimetry measurements of the downwash distribution of a desert locust. Schistocerca gregaria. J. R. Soc. Interface 3, 311-317. Bomphrey, R. J., Harding, N. J., Lawson, N. J., Taylor, G. K., and Thomas, A. L. R. (2005). The aerodynamics of Manduca sexta: digital particle image velocimetry of the leading-edge vortex, J. Exp. Biol., 208, 1079–1094. Bomphrey, R. J., Lawson, N. J., Taylor, G. K., and Thomas, A. L. R. (2006). Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a hawkmoth, Exp. Fluids. 40, 546-554. Bomphrey, R. J., Lawson, N. J., Taylor, G. K., and Thomas, A. L. R. (2006). Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria. J. Roy. Soc. Interface 3, 311-317. Chen, J. S., Chen, J. Y. and Chou, Y. (2008). On the natural frequencies and mode shapes of dragonfly wings. J. Sound and Vibration 313, 643-654. Combes, S. A. and Daniel, T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J Exp. Biol. 206, 2979-2987. Combes, S. A. and Daniel, T. L. (2003). Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J Exp. Biol., (2003), 206, 2989-2997. Combes, S. A. and Daniel, T. L. (2003). Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J Exp. Biol. 206, 2999-3006. Daniel, T. L. and Combes, S. A. (2002). Flexible wings and fins: bending by inertial or fluid-dynamic forces? Integr. Comp. Biol. 42, 1044-1049. Du, G. and Sun, M. (2008). Effects of unsteady deformation of flapping wing on its aerodynamic forces. Appl. Math.Mech.-Engl. Ed. 29, 731-743. Du, G. and Sun, M. (2010). Effects of wing deformation on aerodynamic forces in hovering hoverflies. J. Exp.Biol. 213, 2273-2283. Dudley, R. (2000). The Biomechanics of Insect Flight. Princeton, NJ: Princeton University Press. Ellington, C. P.(1999). The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Exp. Biol. 202, 3439–3448. Ellington, C. P., Vandenberg, C., Willmott, A. P. and Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384, 626-630. Haliday, D., Resnick, R. and Walkerm J.(2007) Fundamentals of physics, 8th ed.Hoboken, NJ:Wiley. Kim, W. K., Ko, J. H., Ko , Park , H. C. and Byun, D. (2009). Effects of corrugation of the dragonfly wing on gliding performance. J. The. Biol. 260, 523–530. Norberg, R. A. (1972). The pterostigma of insect wings an inertial regulator of wing pitch. J. Comp. Physiol. 81, 9-22. Okamoto, M., Yusuda, K. and Azuma, A. (1996). Aerodynamic characteristics of the wings and body of a dragonfly. J Exp. Biol. 199, 281-294. Reece, J. B. and Campbell, N. A. (2002). Biology, 6th ed. San Francisco, CA: Benjamin Cummings. RUPPELL, G. (1989). Kinematic analysis of symmetrical flight manoeuvres of odonata. J. Exp. Biol. 144, 13-42. Sane, S. P. and Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 205, 1087-1096. Sane, S. P. (2003). The aerodynamics of insect flight. J. Exp.Biol. 206, 4191-4208. Silsby, J and Parr, M. J. (2001). Dragonflies of the world, 1st ed. Washington, DC: Smith sonian Institution Press. Steppan, S. J. (2000). Flexural stiffness patterns of butterfly wings (Papilionoidea). J. Res. Lepid. 35, 61-77. Sun, J.Y., Pan, C.X., Tong J. and Zhang, J. (2010). Coupled model analysis of the structure and nano-mechanical properties of dragonfly wings. IET Nanobiotechnol. 4,10-8. Tong, J., Zhao, Y., Sun, J. and Chen, D. (2007). Nanomechanical properties of the stigma of dragonfly Anax parthenope julius Brauer. J. Mater. Sci. 42, 2894-2898. Wang, H., Zeng, L., Liu, H. and Yin, C. (2003). Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies J. Exp. Biol. 206, 745-757. Wang, X. S., Li, Y., Shi, Y. F. (2008). Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein. Composites Science and Technology 68 186–192. Wang, Z. J. (2005). Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183-210. Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K. and Thomas, A. L. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325, 1549-1552. Zhao, L., Huang, Q., Deng, X. and Sane, S. P. (2010). Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7, 485-497. Srygley, R. B. and Thomas, A. L. R. (2002)Unconventional lift-generating mechanisms in free-flying butterflies. Nature. 420, 660-664. Sane, S. P. and Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 205, 1087-1096. Silsby, J. and Parr, M. J. (2001). Dragonflies of the world, 1st ed. Washington, DC:Smith sonian. Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L. and Bomphrey, R. J. (2004). Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 207, 4299-4323. Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323-341 Wang, Z. J. (2005). Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183-210. Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K. and Thomas, A. L. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325, 1549-1552. 張家慈,2010,翅痣對蜻蜓振翅時翅膀形變之影響,國立中興大學理學院物理學系生物物理學研究所碩士論文。
摘要: 翅痣蜻蜓翅膀前緣末端有一顏色加深之構造,稱作翅痣(pterostigma),翅痣為雙層膜之構造,且比他處翅膜厚,面密度也較高。根據我們過去研究,此加重翅膀末端的構造,將會使得翅膀在相同的頻率及振幅振盪下,增加翅膀彎曲形變量。本研究主要分為兩個部分,首先以調控振幅的方式探討翅膀振幅對於彎曲形變的影響。並利用翅膀彎曲與翅膀位置的關係,推算出其間之關係。為進一步探討翅痣的有無對翅膀形變及其周圍流場的影響,我利用流場可視化技術,觀測於相同頻率及振幅下,以正弦波振動的蜻蜓翅膀周圍流場。由於可視化技術限制,此處以較低之風速實驗,並同時將振動頻率調低,以符合活體蜻蜓史卓赫數。研究結果顯示,翅膀的彎曲形變量將會隨著振幅的提高而上升,在去除翅痣前後均然,但在有翅痣翅膀此效應較為明顯;此外,翅膀基部的振動與翅膀末端的位置接近線性關係。風洞實驗中,翅痣去除將會改變翅膀揮動時攻角的變化範圍及其數值大小,而在渦漩行為上,去除翅痣造成的趨勢變化並不明朗。
Pterostigma is a darken region at the leading edge of the wings of many insects. It is bilayer in structure, and is thicker and heavier than the other cells of the wing. Previous study shows that a dragonfly wing with pterostigma would increase wing’s bending deformation at same vibration frequency and amplitude. In this study, I further examined the mechanical characteristics and consequences of pterostigma of dragonfly wings. Firstly, I controlled the vibration amplitudes of the wing base to explore how they affect wing’s bending deformation. Secondly, I applied flow visualization technology to examine the effects of pterostigma, and hence difference in bending deformation, on the flow behaviors around the flapping wings. Because of the limits of ours experimental setup, I used lower vibration frequency for wings in lower wind speed to meet similarity of Strouhal number. The results show that, whether the wing had pterostigma, the wing’s bending deformation was greater when the amplitude increased; however, the effect is more pronounced in wings with pterostigma. Furthermore, the Y-position of pterostigma (i.e. the amplitude of pterostigma) increased with the amplitude of wing base, indirectly implying that a flapping wing with greater bending deformation would also have higher pterostigma position. Results from the wind tunnel experiments show that removal of pterostigma would change the range and angles of wing’s angle of attack. However, the effects of pterostima on the behaviors of vortices are not conclusive.
URI: http://hdl.handle.net/11455/17923
其他識別: U0005-2908201314081100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908201314081100
Appears in Collections:生物物理學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.