Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17928
標題: Attachment device of male diving beetles: functional morphology and dynamics
雄性龍蝨前足吸盤之功能形態與動力特性
作者: Chen, Ying
陳瑩
關鍵字: 吸附力
adhesive force
吸盤
龍蝨
特化剛毛
動力特性
sucker
diving beetle
specialized setae
dynamics
出版社: 生物物理學研究所
引用: 羅聖興;陳則丞 (2011). 足下天地大,掌中有乾坤─橙斑大龍蝨抱握足的形態與吸附力. 臺灣國際科展. 王卫英, 戴振东, 虞庆庆, 杨志贤 (2007). 龙虱吸盘超微结构与吸附能力研究. 南京航空航天大學學報 39(1), 75-79. 杨志贤, 戴振东, 王卫英 (2009). 東方龍虱(雄性)抱握足形態學及吸附特性. 复合材料学报 26(3), 213-218. Aiken, R. B. and Khan, A. (1992). The adhesive strength of the palettes of males of a boreal water beetle, Dytiscus alaskanus J. Balfour Browne (Coleoptera: Dytiscidae). Canadian journal of zoology 70, 1321-1324. Arnett, R. H. and Thomas, M. C. (2001). American beetles: CRC Press. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R. and Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature 405, 681-685. Bergsten, J. and Miller, K. B. (2007). Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes. PLoS One 2. Bergsten, J., Toyra, A. and Nilsson, A. N. (2001). Intraspecific variation and intersexual correlation in secondary sexual characters of three diving beetles (Coleoptera: Dytiscidae). Biological Journal of the Linnean Society 73, 221-232. Betz, O. and Kolsch, G. (2004). The role of adhesion in prey capture and predator defence in arthropods. Arthropod Structure & Development 33, 3-30. Blob, R. W., Wright, K. M., Becker, M., Maie, T., Iverson, T. J., Julius, M. L. and Schoenfuss, H. L. (2007). Ontogenetic change in novel functions: waterfall climbing in adult Hawaiian gobiid fishes. Journal of Zoology 273, 200-209. Bullock, J. M. R., Drechsler, P. and Federle, W. (2008). Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. The Journal of Experimental Biology 211, 3333-3343. Clemente, C. J., Bullock, J. M., Beale, A. and Federle, W. (2010). Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects. The Journal of Experimental Biology. 213, 635-642. Clemente, C. J. and Federle, W. (2008). Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proceedings of the Royal Society B: Biological Sciences 275, 1329-1336. Darwin, C. (1874). The Descent of Man: Forgotten Books. Das, D. and Nag, T. C. (2004). Adhesion by paired pectoral and pelvic fins in a mountain-stream catfish, Pseudocheneis sulcatus (Sisoridae). Environmental Biology of Fishes 71, 1-5. Das, D. and Nag, T. C. (2005). Structure of adhesive organ of the mountain-stream catfish, Pseudocheneis sulcatus (Teleostei: Sisoridae). Acta Zoologica 86, 231-237. Denny, M. (1995). Air and Water: The Biology and Physics of Life''s Media: Princeton University Press. Ditsche-Kuru, P., Koop, J. H. E. and Gorb, S. N. (2010). Underwater attachment in current: the role of setose attachment structures on the gills of the mayfly larvae Epeorus assimilis (Ephemeroptera, Heptageniidae). The Journal of Experimental Biology 213, 1950-1959. Federle, W. (2006). Why are so many adhesive pads hairy? Journal of Experimental Biology 209, 2611-2621. Geerinckx, T., Herrel, A. and Adriaens, D. (2011). Suckermouth armored catfish resolve the paradox of simultaneous respiration and suction attachment: a kinematic study of Pterygoplichthys disjunctivus. J Exp Zool A Ecol Genet Physiol. 315, 121-131. Gorb, S. N. (2001). Attachment Devices of Insect Cuticle: Kluwer Academic Publishers. Gorb, S. N. (2008). Biological attachment devices: exploring nature''s diversity for biomimetics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, 1557-1574. Gorb, S. N. (2010). Biological and Biologically Inspired Attachment Systems Springer Handbook of Nanotechnology, (ed. B. Bhushan), pp. 1525-1551: Springer Berlin Heidelberg. Gravish, N., Wilkinson, M. and Autumn, K. (2008). Frictional and elastic energy in gecko adhesive detachment. Journal of The Royal Society Interface 5, 339-348. Grimaldi, D. A. and Engel, M. S. (2005). Evolution of the Insects. Cambridge University Press. Hasenfuss, I. (1999). The adhesive devices in larvae of Lepidoptera (Insecta, Pterygota). Zoomorphology 119, 143-162. Kemp, P. S., Tsuzaki, T. and Moser, M. L. (2009). Linking behaviour and performance: intermittent locomotion in a climbing fish. Journal of Zoology 277, 171-178. Libonatti, M. L., Michat, M. C. and Torres, P. L. M. (2011). Key to the subfamilies, tribes and genera of adult Dytiscidae of Argentina (Coleoptera: Adephaga). Revista de la Sociedad Entomologica Argentina 70, 317-336. Miller, K. B. (2003). The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biological Journal of the Linnean Society 79, 359-388. Motta, P. J. and Fulcher, B. A. (2006). Suction disk performance of echeneid fishes. Canadian journal of zoology 84, 42-50. Nachtigall, W. (1974). Biological mechanisms of attachment: the comparative morphology and bioengineering of organs for linkage, suction, and adhesion: Springer-Verlag. Ribera, I., Vogler, A. P. and Balke, M. (2008). Phylogeny and diversification of diving beetles (Coleoptera: Dytiscidae). Cladistics 24, 563-590. Schulte-Hostedde, A. and Alarie, Y. (2006). Morphological patterns of sexual selection in the diving beetle Graphoderus liberus. Evolutionary Ecology Research 8, 891–901. Smith, A. M. (1996). Cephalopod sucker design and the physical limits to negative pressure. Journal of Experimental Biology 199, 949-958. Smith, A. M. (1991). The Role of Suction in the Adhesion of Limpets. Journal of Experimental Biology 161, 151-169. Smith, A. M. (2002). The structure and function of adhesive gels from invertebrates. Integrative and Comparative Biology 42, 1164-1171. Smith, J., Barnes, W., Downie, J. and Ruxton, G. (2006). Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 192, 1193-1204. Varenberg, M., Pugno, N. M. and Gorb, S. N. (2010). Spatulate structures in biological fibrillar adhesion. Soft Matter 6, 3269-3272. Voigt, D., Schweikart, A., Fery, A. and Gorb, S. (2012). Leaf beetle attachment on wrinkles: isotropic friction on anisotropic surfaces. The Journal of Experimental Biology. 215, 1975-1982. von Byern, J., Wani, R., Schwaha, T., Grunwald, I. and Cyran, N. (2012). Old and sticky—adhesive mechanisms in the living fossil Nautilus pompilius (Mollusca, Cephalopoda). Zoology 115, 1-11. Yunus A. Cengel, J. M. C. (2010). Fluid Mechanics: McGraw-Hill.
摘要: 雄性龍蝨具有特化剛毛,無須藉由化學黏液或肌肉控制,便能在水中交配時穩固吸附在雌性龍蝨翅鞘上,藉以傳遞基因至子代。多數龍蝨科的成員具有圓形剛毛,形態類似吸盤;僅有大龍蝨屬具有長條形剛毛,近端具有凹陷吸盤,並有平行排列的溝槽延伸至遠端。透過量測博物館標本得知,在相同體型下,具長條形剛毛的龍蝨具有較小的腳墊,為探討其是否具有較佳的吸附能力,我們比較太平洋麗龍蝨(具圓形特化剛毛)和橙斑大龍蝨(具長條形特化剛毛)的剛毛形態和附著能力,並探討其附著機制。單根特化剛毛量測結果顯示,無論是垂直吸附力或側向剪切力,皆與正向力成正比。在較小的正向力下(0.25 mN to 1.0 mN),長條形剛毛的單位面積吸附力增加幅度較圓形剛毛顯著;若僅考慮吸盤部分,長條形剛毛所產生的單位面積吸附力為圓形的四倍。我們估計整隻龍蝨的吸附力,發現相對於體重,橙斑大龍蝨的吸附能力僅為太平洋麗龍蝨的百分之三十。我們從剛毛下壓附著與拔離的過程中發現,長條形剛毛的連接柄上下兩端具有可轉動的關節,當受到外力時,剛毛會沿著平行溝槽的方向滑動,但圓形剛毛的連接柄則直接傳遞外力至剛毛表面。藉此我們提出彈簧模型,透過動量變化所經由的時間,可推測彈性係數較小而滑動時間增長的長條形剛毛所感受到的外力將會下降。 此外,當拔離長條形剛毛的速度越快時,所量測到的吸附力也越大,這與流體在管柱中運動的模型所推測的趨勢一致。因此,具長條形剛毛的雄性龍蝨可以透過慢速拔離使剛毛容易與吸附表面脫離;當雌性龍蝨快速甩動時,卻能產生更高的附著力。本研究比較兩種吸附剛毛的形態結構以及力學行為,發現長條形剛毛具有下述特性:(一)吸盤部份具有更佳的單位面積吸附力;(二)剛毛與連接柄的結構有助於降低傳遞到剛毛表面的外在甩動力;(三)可藉由控制脫離介面的速度來調控吸附力大小。我們認為鮮為人知的長條形剛毛具有的特殊形態結構與力學機制,可提高附著與脫離表面的效能,即使具有較小的附著腳墊,卻依然有利大龍蝨交配繁衍。
Male diving beetles have specialized adhesive setae to adhere firmly on the elytra of female for underwater mating without using glue or muscular control. Two types of setae are found in the palettes of Dytiscid beetles: sucker-like circular setae, and spatulate setae with proximal sucker from which parallel channels extended distally. Survey of museum specimen suggests that palette size increases with body size, but at a give body size, those with spatulate setae are smaller. To examine whether spatulate setae have better adhesive performance to compensate for smaller total contact area, we examined and compared the adhesive ability and functioning mechanisms of circular setae from Hydaticus pacificus and spatulate setae from Cybister rugosus. In either shape of setae, both adhesive force and shear resistance increase with load. The increase of adhesive force by the spatulate setae is more sensitive to load than circular ones. Though spatulate setae generate four times of adhesive force per unit area that by circular ones, total adhesive force relative to body weight provided by a diving beetle with spatulate setae is only 30% that with circular ones. Our observations of the attachment-detachment process reveal that the stalk of spatulate setae has mobile joints allowing sliding motion along the direction parallel to the channels, but that of circular setae does not permit rotation and directly transfers external force to the setal surface. We propose a “spring model” to describe the difference of two types of setae, and predict that with smaller spring constant and longer detaching time of sliding, less external force could be transferred to the surface of spatulate setae. We also propose a “pipe flow model” to explain the results that faster detaching velocity leads to greater adhesive forces. Consequently, the males could resist fast swinging of the females while detach easily with slow peeling motion. Lowest shear resistance toward proximal direction guides the seta to return to position for efficient detachment. In conclusion, we found the following features of spatulate setae: (1) greater adhesive force per area in the sucker part; (2) mobile stalk joints to reduce force transferred to the setal surface; (3) velocity control to adjust the adhesive force. Therefore, the less known spatulate setae of male diving beetles use special structures and mechanisms to improve attachment performance and detachment efficiency, so that even with smaller palette size the diving beetles with spatulate setae could still succeed in nature.
URI: http://hdl.handle.net/11455/17928
其他識別: U0005-2706201216083400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2706201216083400
Appears in Collections:生物物理學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.