Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17949
DC FieldValueLanguage
dc.contributor施明智zh_TW
dc.contributor卓逸民zh_TW
dc.contributor.advisor紀凱容zh_TW
dc.contributor.author曾億萍zh_TW
dc.contributor.authorTszng, Yi-Pingen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T07:02:33Z-
dc.date.available2014-06-06T07:02:33Z-
dc.identifierU0005-1507201114052700zh_TW
dc.identifier.citation丁上杰. 魚類操控式游動之流體物理與仿生學研究. (2009). 朱祥海. 魚類學. (1997): 水產出版社. 沈世傑. 台灣魚類誌. (1993). 殷名稱, 陳朝清. 魚類生態學. (1998): 臺北縣基隆市 水產出版. 張智傑, 黃文彬. 蓋斑鬥魚之分類現況與生物學簡介. 台灣水產 (2008) 653:67-71. 黃玉華, 李宗翰, 廖運志, 尤少彬. 蓋斑鬥魚 (Macropodus opercularis) 生殖行為觀察. 生物科學 (1998) 41:21-28. 黃貴民. 魚類學概論. (1997): 基隆巿 水產出版 臺北縣新店巿 農學社總經銷 詹見平, 吳世霖, 陳志順, 黃敏琦. 蓋斑鬥魚 (台灣鬥魚) 保育暨宣導. 台中縣山城生態環境維護協會 (大甲溪生態環境維護協會),台中縣 (1998). Alcock J. Animal behavior: An evolutionary approach 8th. (2005): Sinauer Associates Sunderland, MA. Blake R. On balistiform locomotion. Journal of the Marine Biological Association of the United Kingdom (1978) 58:73-80. Bleckmann H, Zelick R. Lateral line system of fish. Integrative Zoology (2009) 4:13-25. Bradbury JW, Vehrencamp SL. Principles of animal communication. (1998): Sunderland, MA : Sinauer Associates. Breder Jr C. The locomotion of fishes. (1926). Cantalupo C, Bisazza A, Vallortigara G. Lateralization of displays during aggressive and courtship behaviour in the Siamese fighting fish (Betta splendens). Physiology & behavior (1996) 60:249-252. Chiszar D, Drake RW, Windell JT. Aggressive behavior in rainbow trout (Salmo gairdneri Richardson) of two ages1. Behavioral Biology (1975) 13:425-431. Davie N, Metzinger K. Simulation of Earth Penetration Shock Using High-Speed Impact into an Engineered Water Target, Part I. Davis R, Kassel J. The ontogeny of agonistic behavior and the onset of sexual maturation in the paradise fish, Macropodus opercularis (Linnaeus). Behavioral biology (1975) 14:31-39. Dong GJ, Lu XY. Characteristics of flow over traveling wavy foils in a side-by-side arrangement. Physics of Fluids (2007) 19:057107. Drucker E, Jensen J. Pectoral fin locomotion in the striped surfperch. II. Scaling swimming kinematics and performance at a gait transition. The Journal of experimental biology (1996) 199:2243. Drucker E, Lauder G. Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Integrative and Comparative Biology (2002a) 42:243. Drucker E, Lauder G. Wake dynamics and locomotor function in fishes: interpreting evolutionary patterns in pectoral fin design. Integrative and Comparative Biology (2002b) 42:997. Drucker E, Lauder G. Function of pectoral fins in rainbow trout: behavioral repertoire and hydrodynamic forces. Journal of Experimental Biology (2003) 206:813-826. Drucker EG, Lauder GV. Wake dynamics and fluid forces of turning maneuvers in sunfish. Journal of Experimental Biology (2001) 204:431-442. Gibb A, Jayne B, Lauder G. Kinematics of pectoral fin locomotion in the bluegill sunfish Lepomis machrochirus. Journal of Experimental Biology (1994):133-133. Gottlieb J, Tangorra J, Esposito C, Lauder G. A biologically derived pectoral fin for yaw turn manoeuvres. Applied Bionics and Biomechanics (2010) 7:41-55. Hale M, Day R, Thorsen D, Westneat M. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes. Journal of Experimental Biology (2006) 209:3708. Hall DD. A qualitative analysis of courtship and reproductive behavior in the paradise fish, Macropodus opercularis (Linnaeus). Zeitschrift fur Tierpsychologie (1968) 25:834-842. Haller J. Biochemical background for an analysis of cost-benefit interrelations in aggression. Neuroscience & Biobehavioral Reviews (1995) 19:599-604. Henglmuller S, Ladichm F. Development of agonistic behaviour and vocalization in croaking gouramis. Journal of Fish Biology (1999) 54:380-395. Hofer B. Studien uber die hautsinnesorgane der fische. I. Die funktion der seitenorgane bei den fischen. Ber. Kg. Bayer. Biol. Versuchssta. Munchen (1908) 1:115. Huntingford F. The study of animal behaviour. (1984): London : Chapman and Hall Lauder G, Madden P, Mittal R, Dong H, Bozkurttas M. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. Bioinspiration & Biomimetics (2006) 1:S25. Maddock L, Bone Q, Rayner JMV. Mechanics and physiology of animal swimming. (1994): Cambridge Univ Pr. Miklosi A, Haller J. The influence of opponent-related and outcome-related memory on repeated aggressive encounters in the paradise fish (Macropodus opercularis). The Biological Bulletin (1995) 188:83. Miklosi A, Haller J, Csanyi V. Learning about the opponent during aggressive encounters in paradise fish (Macropodus opercularis L.): when it takes place? Behavioural Processes (1997) 40:97-105. Shadwick RE, Lauder GV. Fish biomechanics. (2006): Academic Pr. Tytell E. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming. Journal of Experimental Biology (2006) 209:1516. Vogel S. Life in moving fluids: the physical biology of flow. (1996): Princeton Univ Pr. Webb P. Kinematics of pectoral fin propulsion in Cymatogaster aggregata. J. exp. Biol (1973) 59:697-710. Windsor SP, McHenry MJ. The influence of viscous hydrodynamics on the fish lateral-line system. Integrative and Comparative Biology (2009) 49:691.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/17949-
dc.description.abstract蓋斑鬥魚 (Macropodus opercularis L.) 是一種小型淡水魚,雄性個體在繁殖期會為了爭奪領域而更具有鬥性,進入鬥爭時,兩魚相互靠近且身體呈現 J 型朝對手的尾部作頭尾方向相反的旋轉行為,前人稱其為「頭尾展示行為」 (Head-Tail Display, HTD)。本研究經由觀察得知多次HTD行為後可決定勝負,然而過去文獻並未探究HTD在鬥爭過程中所扮演的角色,也未解釋胸鰭擺動如何影響兩魚當時的運動。因此,本研究進一步探討HTD時胸鰭擺動行為模式,並推測其同時具有展示及力學較勁的功能,可影響勝負。打鬥行為實驗中,我將兩隻體型相當的雄魚置入靜水缸內,以常速攝影機紀錄完整鬥爭過程,並利用高速攝影以500fps的速度垂直俯拍,以量化胸鰭擺動的頻率及振幅;高速影片分析顯示,HTD開始後胸鰭會進入快速擺動時期,本研究中,我以胸鰭擺動角加速度的最大值及最小值作為HTD的始末時間。結果顯示:(一) 胸鰭擺動的頻率、位置、和振幅在直線游泳與HTD時期有顯著差異。直線游泳時,泳速為1.37±0.37 BLs-1,胸鰭擺動頻率為4.11±1.51 Hz;HTD時,胸鰭擺動頻率增為8.52±1.34 Hz,但泳速反而降低為0.73±0.26 BLs-1。此外,直線游泳時胸鰭擺動的位置為32.56±3.52°處,而HTD時則為84.23±13.45°。(二)HTD時兩魚胸鰭的擺動頻率及振幅相近,但開始的時間不同。先開始HTD行為的攻擊者的內側胸鰭(靠近對手端)會在與身體夾92.06±10.94°處前後擺動,而外側胸鰭則在75.83±8.78°處前後擺動;較晚開始HTD的防守者內側胸鰭以94.45±8.73°前後擺動,外鰭以74.58±11.84°前後擺動。由此可知兩魚內外兩側胸鰭的擺動範圍不同,內側胸鰭在與身體呈90°處前後擺動,可增加碰觸對手的機會,外側胸鰭擺動則產生向前的分力(及力矩)來維持旋轉。(三) 打鬥的優勢者與服從者在HTD時胸鰭擺動的頻率及振幅相近,優勢者內側胸鰭所耗費的功率為0.89±0.55 x 10-4 J/s,略高於服從者的0.70±0.36 x 10-4 J/s;優勢者內側胸鰭擺動的角度為93.60±6.90°,較服從者的119.04±7.40°更接近90°,因此比對手更容易將力學訊息傳達給對方。優勢者內外兩側的擺動位置角度差異大,可提供力矩維持原地旋轉的姿態;服從者內外兩側擺動位置均大於90°,故可以產生向後的推進力以離開HTD成對行為。(四)歸納常速影片中完整的打鬥行為,發現有些打鬥能透過三次以下的HTD來決定勝負,此時個體不會受傷;當打鬥歷經八次以上的HTD行為後,便發生衝撞對手及以嘴互咬等較激烈的行為,且個體可能因而受傷。綜上所述,在HTD時期,雄性鬥魚可透過控制胸鰭擺動方向來調整彼此的相對位置與姿態,並影響能量傳遞效率,因此,HTD兼具展示及力學較勁功能,可避免激烈打鬥所帶來的傷害。zh_TW
dc.description.abstractMale paradise fishes Macropodus opercularis L. fight for territory during breeding season. During fighting a distinctive behavior, so-called “Head-Tail Display” (HTD), can be observed and characterized by the opponents following the other's tail leading to swimming in a rotational fashion, with bodies oriented in parallel and bended in J-shape. After several rounds of HTD, the dominant fish might be determined; but previous studies never investigated the role of HTD during fighting. It is also unclear how flapping of pectoral fins might affect the motion of two fishes during HTD. In this study, I examined the behavioral patterns and kinematics of pectoral fin flapping during HTD, and assessed the physical factors that might determine the results of fighting. To this end, the fighting behaviors were recorded from the top using a regular speed DV (30 fps) and a high-speed video camera (500 fps), from which the flapping frequency and amplitude of pectoral fins were analyzed. The period of HTD could be determined quantitatively as the time between maximum and minimum angular velocity of the pectoral fins. My results show that: (1) Despite lower moving speed (0.73±0.26 BLs-1, N=20) than that of swimming (1.37±0.37 BLs-1, N=17), during HTD the flapping frequency, position, and amplitude of pectoral fins are significantly greater. During swimming, the pectoral fins flapped at 4.11±1.51 Hz, with amplitude of 30.38±3.68° from the position of 32.56±3.52°. But during HTD, the pectoral fins flapped at 8.52±1.34 Hz, with amplitude of 48.91±6.05° from 84.23±13.45°, a position farther away from the body. (2) During HTD, the flapping frequency and amplitude were not significantly different between two fishes. However, whether it started HTD earlier (the attacker, A) or later (the defender, D), the pectoral fin of the inner side (near the opponent) flapped at an angle (A: 92.06±10.94°; D: 94.45±8.73°) significantly greater than that of the outer side (far from opponent; A: 75.83±8.78°; D: 74.58±11.84°). Therefore, the inner fins flapped at an angle close to 90° would have greater opportunity to touch its opponent's body, while the outer fins provided the force (and moment) to maintain rotational motion. (3) The dominances and submissions had similar flapping frequency and amplitude, but the dominances spent more power (0.89±0.55 x 10-4 J/s) flapping the inner fins than the submission do (0.70±0.36 x 10-4 J/s). The dominances flapped their inner fin from a position of 93.60±6.90°, making them easier to transmit mechanical signals to the opponents than the submissions do (119.04±7.40°). Furthermore, the dominances had different flapping angles between two sides allowing it to rotate; while the submissions had similar angles, both greater than 90°, for backward retreat from the HTD pairing. (4) Observations of the whole fighting periods show that in some cases, the dominance could be determined in less than three HTD events and no fish was injured; however, when HTD events were greater than eight times fishes would begin more aggressive behaviors like biting or mouthlocking, increasing the risk of injury. In conclusion, during HTD, the male paradise fishes could control flapping of their pectoral fins to adjust their motion and relative position to each other, and could also affect the transmission efficiency of mechanical signals. Hence HTD provides both functions in display and mechanical rivalry that can reduce injury from aggressive fighting.en_US
dc.description.tableofcontents目錄 1.前言 1 2.材料方法 3 2.1. 實驗生物 3 2.1.1. 採集地點與養殖適應 3 2.1.2. 基礎形質量測 3 2.2. 實驗方法 3 2.2.1. 頭尾展示 (HTD) 行為實驗 3 2.2.2. 直線游泳 (swimming) 行為實驗 4 2.3. 影片分析 4 2.3.1. 身體標記點追蹤 4 2.3.2. 鬥爭中優勢者與服從者的判別 4 2.4. 運動學參數分析 4 2.4.1. 胸鰭擺動時與體側的夾角變化 4 2.4.2. 打鬥中蓋斑鬥魚與對手間的距離 5 2.5. 蓋斑鬥魚HTD時期始末的判定 5 2.6. 蓋斑鬥魚在HTD時期所耗費的能量估算 6 2.7. 生物統計 6 3. 結果 7 3.1.蓋斑鬥魚直線游泳與HTD行為的比較 7 3.1.1. 胸鰭擺動 7 3.1.2. 胸鰭擺動與移動速率間的關係 7 3.2 . 攻擊者與防守者在HTD胸鰭快速擺動時期的比較 7 3.2.1. 攻擊者與防守者胸鰭擺動的差異 7 3.2.2. 打鬥個體內外兩側胸鰭擺動的差異 8 3.2.3. 打鬥中個體與對手間的距離 8 3.3. 優勝者與服從者在HTD胸鰭快速擺動時期的比較 8 3.3.1. 優勝者與服從者胸鰭擺動的差異 9 3.3.2. 打鬥個體內外兩側胸鰭擺動的差異 9 3.3.3. 優勝者與服從者在HTD時兩魚間距離的比較 9 4. 討論 10 4.1. 蓋斑鬥魚直線游泳與HTD時期胸鰭擺動的差異及其效應 10 4.2. HTD的姿態及胸鰭擺動之力學效應 10 4.3. HTD時期兩魚平行靠近的距離及其對打鬥的影響 11 4.4. 優勝者與服從者HTD中胸鰭快速擺動的差異與力學效應 11 4.5. 蓋斑鬥魚HTD行為對打鬥結果的影響 12 5. 結論 13 6. 參考文獻 32 表目錄 表1、蓋斑鬥魚樣本形質量測結果 14 表2、直線游泳和HTD時期胸鰭的頻率、振幅、擺動角度的最大值與最小值移動速率的比較。 15 表3、攻擊者(Attacker)與防守者(Defender)在HTD胸鰭快速時期胸鰭擺動的頻率、振幅、擺動平均角度、及胸鰭擺動時所耗費功率。 16 表4、十組蓋斑鬥魚打鬥實驗中,攻擊者(Attacker,A)和防守者(Defender,D)快速擺動胸鰭時期的時間長短,兩魚距離大於或小於胸鰭長度的相對時間,以及胸鰭是否碰觸到對手身體的紀錄。 17 表5、優勢者 (Dominance) 與服從者 (Submission)在HTD胸鰭快速擺動時期,胸鰭擺動的頻率、振幅、擺動平均角度、及胸鰭擺動時所耗費的功率。 18 表6、十組蓋斑鬥魚打鬥實驗中,優勢者(Dominance,D)和服從者(Submission,S)快速擺動胸鰭時期的時間長短,兩魚距離大於或小於胸鰭長度的相對時間,以及胸鰭是否碰觸到對手身體的紀錄。 19 表7、經由常速攝影機所紀錄的十八組蓋斑鬥魚打鬥的試驗中,具高速影像數據的十組紀錄,包括所歷經HTD次數、衝撞對手次數、與以嘴互咬(Mouthlock)的次數。 20 表8 、經由常速攝影機所紀錄的十八組蓋斑鬥魚打鬥的試驗中,不具高速影像數據的八組紀錄,包括所歷經HTD次數、衝撞對手次數、與以嘴互咬(Mouthlock)的次數。 21 圖目錄 圖1、蓋斑鬥魚形態。 22 圖2、HTD行為實驗儀器裝置 23 圖3、HTD 時期胸鰭擺動的量化方式及其比較。 24 圖4、蓋斑鬥魚HTD時期兩魚間的距離的量化方式及其比較。 25 圖5、HTD時期鬥魚內側胸鰭擺動角度及角加速度隨時間的變化。 26 圖6、兩隻蓋斑鬥魚在進行鬥爭時,內側胸鰭角加速度(angular acceleration) 隨時間的變化圖 27 圖7、雄性蓋斑鬥魚在直線游泳以及HTD時期,左右兩側胸鰭與身體間的夾角θ隨時間的變化。 28 圖8、蓋斑鬥魚在直線游泳和HTD時胸鰭擺動頻率與移動速率的關係圖。 29 圖9、HTD行為時兩魚間的距離與胸鰭長度的比較及兩魚最靠近彼此時的影像。 30 圖10、HTD行為時兩魚間的距離與胸鰭間的比較及胸鰭直接碰觸到對手的影像。 31zh_TW
dc.language.isoen_USzh_TW
dc.publisher生物物理學研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1507201114052700en_US
dc.subjectMacropodus opercularis L.en_US
dc.subject蓋斑鬥魚zh_TW
dc.subjectHead-Tail Display (HTD)en_US
dc.subjectpectoral fin flappingen_US
dc.subjecthigh speed videographyen_US
dc.subjectbiomechanicsen_US
dc.subject頭尾展示行為zh_TW
dc.subject胸鰭擺動zh_TW
dc.subject高速攝影術zh_TW
dc.subject生物力學zh_TW
dc.title蓋斑鬥魚頭尾展示的行為模式與生物力學探討zh_TW
dc.titleA Study of Behavioral Patterns and Biomechanics of Head-Tail Display in Paradise Fishes (Macropodus opercular L.)en_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:生物物理學研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.