Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17966
標題: 基於演化式計算之圓極化槽孔天線設計
The Design of Circularly Polarized Slot Antenna Based on Evolutionary Computation
作者: 韓端勇
Han, Tuan-Yung
關鍵字: evolutionary computation
演化式計算
circular polarization
slot antenna
genetic local search algorithm
圓極化
槽孔天線
基因區域搜尋演算法
出版社: 應用數學系所
引用: [1] G. Beddeleem, J. M. Ribero, G. Kossiavas, R. Staraj, and E. Fond, “Dual-frequency circularly polarized antenna”, Microw. Opt. Technol. Lett., Vol. 50, No. 1, pp.177-180, 2008. [2] C. H. Chan, S. H. Yeung, W. S. Chan, and K. F. Man, “Genetic algorithm optimized printed UWB sickle-shape dipolar antenna with stable radiation pattern”, Microw. Opt. Technol. Lett., Vol. 49, No. 11, pp.2695-2697, Nov. 2007 [3] F. S. Chang, K. L. Wong, and T. W. Chiou, “Low-cost broadband circularly polarized patch antenna,” IEEE Trans. Antennas Propagat., vol. 51, pp. 3006-3009, Oct. 2003. [4] K. M. Chang, R. J. Lin, I. C. Deng, and Q. X. Ke, “A novel design of a microstrip-fed shorted square-ring slot antenna for circular polarization”, Microw. Opt. Technol. Lett., Vol. 49, pp. 1684-1687, 2007 [5] Y. B. Chen, Y. C. Lin, and F. S. Zhang, “CPW-fed broadband circularly polarized square slot antenna”, Electron. Lett., Vol. 42, pp. 1074-1075, 2006 [6] H. Choo, and H. Ling, “Design of multiband microstrip antennas using a genetic algorithm”, IEEE Microw. Wireless Compon. Lett., vol. 12, No. 9, pp. 345-347, Sept. 2002 [7] C. Christodoulou and M. Georgiopoulos, Applications of Neural Networks in Eletromagnetics, 1rd ed., Oxford: Clarendon, 1999. [8] C. C. Chou, K. H. Lin, and H. L. Su, “Broadband circularly polarized cross-patch-loaded square slot antenna”, Electron. Lett., Vol. 43, pp. 485-486, 2007 [9] K. L. Chung, and A. S. Mohan, “A systematic design method to obtain broadband characteristics for singly-fed electromagnetically coupled patch antennas for circular polarization”, IEEE Trans. Antennas Propag., Vol. 51, No. 12, pp. 3239-3248, Dec. 2003 [10] M. Ding, R. Jin, and J. Geng, “Optimal design of ultra wideband antennas using a mixed model of 2-D genetic algorithm and finite-difference time-domain”, Microw. Opt. Technol. Lett., Vol. 49, No. 12, pp.3177-3180, Dec. 2007 [11] A. Farnni, A. Manunza, M. Marchesi, and F. Pilo, “Tabu search metaheuristics for global optimization of electromagnetic problem”, IEEE Trans. Magnetics, Vol. 34, pp.2960-2963, Sept. 1998. [12] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip antenna design handbook, Artech House, Norwood, MA, 1995. [13] D. Guha, and Y. M. M. Antar, “Circular microstrip patch loaded with balanced shorting pins for improved bandwidth”, IEEE Antennas Wireless Propag. Lett., Vol. 5, .pp.217-219, 2006. [14] T. Y. Han, and C. Y. D. Sim, “Probe-feed circularly polarized square-ring microstrip antennas with thick substrate,” Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, pp. 71-80, 2007 [15] K. B. Hsieh, M. H. Chen, and K. L. Wong, “Single-feed dual-band circularly polarized microstrip antenna”, Electron. Lett., Vol. 34, pp.1170-1171, 1998 [16] C. F. Huang, and H. M. Li, “Design optimization of chip antennas using the GA-FDTD approach”, Int. J. RF and Microw. CAE, Vol. 15, pp.116-127, 2005 [17] IEEE Standard Test Procedures for Antennas, IEEE Standard 149, 1979. [18] J. M. Johnson and Y. Rahmat-Samii, “Genetic Algorithm in Engineering Electromagnetics”, IEEE Trans. Antennas Propag. Magazine, Vol. 39, No. 4, Aug. 1997. [19] J. M. Johnson, and Y. Rahmat-Samii, “Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas”, IEEE Trans. Antennas Propag., Vol. 47, No. 10, pp. 1606-1614, Oct. 1999 [20] A. J. Kerkhoff, and H. Ling, “Design of a band-notched planar monopole antenna using genetic algorithm optimization”, IEEE Trans. Antennas Propag., Vol. 55, No. 3, pp. 604-610, March 2007 [21] Y. Kim, and E. K. Walton, “Automobile conformal antenna design using non-dominated sorting genetic algorithm (NSGA)”, IEE Porc.-Microw. Antennas Propag., Vol. 153, No. 6, pp.579-582, Dec. 2006 [22] J. Kim, T. Yoon, J. Kim, and J. Choi, “Design of an ultra wide-band printed monopole antenna using FDTD and genetic algorithm”, IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 395-397, June 2005 [23] B. Krishnamachari and S. B. Wicker, “ Optimization of Fixed Network Design in Cellular Systems using Local Search Algorithm,” Vehicular Technology Conference, 2000. [24] K. L. Lau and K. M. Luk, “A wide-band circularly-polarized L-probe coupled patch antenna for dual-band operation,” IEEE Trans. Antennas Propagat., vol. 53, pp. 2636-2644, Aug. 2005. [25] K. L. Lau, H. Wong, and K. M. Luk, “A full-wavelength circularly polarized slot antenna,” IEEE Trans. Antennas Propagat., vol. 54, pp. 741-743, Feb. 2006. [26] R. Q. Lee and K. F. Lee, “Experimental study of the tow-layer electromagnetically coupled rectangular patch antenna,” IEEE Trans. Antennas Propagat., vol. 38, pp. 1298-1302, Aug. 1990. [27] Y. Lee, J. Yeo, and R. Mittra, “A dual frequency circularly polarized antenna design using a combination of DRA and microstrip patch”, Antennas and Propagation Society International Symposium, pp.122-125, 2003 [28] Q. Li, and Z. Shen, “An Inverted microstrip-fed cavity-backed slot antenna for circular polarization,” IEEE Antennas and Wireless Propagat. Lett., vol. 1, pp. 190-192, 2002. [29] W. C. Liu, “Design of a CPW-fed notched planar monopole antenna for multiband operations using a genetic algorithm”, IEE Porc.-Microw. Antennas Propag., Vol. 152, No. 4, pp. 273-277, August 2005 [30] W. K. Lo, J. L. Hu, C. H. Chan, and K. M. Luk, “Circularly polarized patch antenna with an L-shaped probe fed by a microstrip line”, Microw. Opt. Technol. Lett., Vol. 24, pp. 412-414, 2000. [31] D. M. Pozar, “Input impedance and mutual coupling of rectangular microstrip antennas”, IEEE Trans. Antennas Propag., Vol. AP-30, No. 6, pp. 1191-1196, Nov. 1982 [32] J. Robinson and Y. Rahmat-Samii, “Particle Swarm Optimization in Electromagnetics”, IEEE Trans. Antennas Propag., Vol. 52, No. 2, pp. 397-407, Feb. 2004 [33] J. S. Row, “Dual-frequency circularly polarized annular-ring microstrip antenna”, Electron. Lett., Vol. 40, No. 3, pp.1045-1047, 2004. [34] J. S. Row, “Design of aperture-coupled annular-ring microstrip antennas for circular polarization”, IEEE Trans. Antennas Propagat., Vol. 53, No. 5, pp.1779-1784, 2005. [35] J.-S. Row, “The design of a square-ring slot antenna for circular polarization”, IEEE Trans. Antennas Propag., Vol. 53, No. 6, pp. 1967-1972, June 2005 [36] R. Rutenbar, "Simulated Annealing Algorithms: an Overview", IEEE Circuits and Devices Magazine, pp.19-26, January 1989. [37] C. W. Su, and J. S. Row, “Slot-coupled microstrip antenna for broadband circular polarization”, Electron. Lett., Vol. 42, pp. 318-319, 2006 [38] C. M. Su, and K. L. Wong, “A dual-band GPS microstrip antenna”, Microw. Opt. Technol. Lett., Vol. 33, No. 4, pp.238-240, 2002 [39] J. Y. Sze, K. L. Wong, and C. C. Huang, “Coplanar waveguide-fed square slot antenna for broadband circularly polarized radiating,” IEEE Trans. Antennas Propagat., Vol. 51, pp.2141-2144, Aug. 2003. [40] S. D. Targonski and D. M. Pozar, “Design of wideband circularly polarized aperture-coupled microstrip antennas,” IEEE Trans. Antennas Propagat., vol. 41, pp. 214-220, Feb. 1993. [41] N. Telzhensky, and Y. Leviatan, “Novel method of UWB antenna optimization for specified input signal forms by means of genetic algorithm”, IEEE Trans. Antennas Propag., Vol. 54, No. 8, pp. 2216-2225, Aug. 2006 [42] B. Y. Toh, R. Cahill, and V. F. Fusco, “Understanding and measuring circular polarization”, IEEE Trans. Education, Vol. 46, No. 3, pp. 313-318, Aug. 2003. [43] L. Y. Tseng, and T. Y. Han, “A genetic local search algorithm for the floorplan problem with boundary constraints”, The International Conference on Genetic and Evolutionary Methods (GEM'07), 2007 [44] K. L. Wong, C. C. Huang, and W. S. Chen, “Printed ring slot antenna for circular polarization,” IEEE Trans. Antennas Propagat., vol. 50, pp. 75-77, Jan. 2002. [45] T. Xiang, K. F. Man, K. M. Luk, and C. H. Chan, “Design of multiband miniature handset antenna by MoM and HGA”, IEEE Antennas Wireless Propag. Lett., Vol. 5, pp. 179-182, 2006 [46] K. P. Yang, and K. L. Wong, “Dual-band circularly-polarized square microstrip antenna”, IEEE Trans. Antennas Propagat., Vol. 49, No. 3, pp.377-382, 2001. [47] R. Zentner, Z. Sipus, and J. Bartolic, “Optimization synthesis of broadband circularly polarized microstrip antennas by hybrid genetic algorithm”, Microw. Opt. Technol. Lett., Vol. 31, No. 3, pp.197-201, Nov. 2001.
摘要: 許多現代的通訊系統使用圓極化(circular polarization, CP)波傳送訊號,藉以提昇傳輸效能。本論文首先對系統化、演化式的設計方法進行研究,以獲得最好的CP特性為目標,並針對單饋入圓極化寬槽孔天線進行設計。尤其是對任意給定的天線操作頻率,本演化式設計方法都能提供最佳或近似最佳的阻抗頻寬與軸比頻寬,毋須使用傳統的嘗試錯誤法。此演化式設計方法的核心是基因區域搜尋演算法(Genetic Local Search, GLS)。首先找出寬槽孔天線的關鍵參數,並以模擬軟體驗證其對CP特性的影響。據此開發GLS演算法的數個區域搜尋程序,以加速優化處理。數種不同槽孔形狀的天線被設計出來,例如橢圓形、正三角形、正方形等。由實驗的結果看出,提出的天線可以滿足DCS、PCS、UMTS、802.11 a/b/g與HIPERLAN等應用的需求。此外,在CP寬槽孔天線上下分別增加了一導引器與反射器,以改善天線效能進而滿足遠距離通訊之目的。藉由分別改變導引器與反射器的位置,來研究天線效能變化情形。據此實作的天線原型,經量測其增益可達10 dBi,CP頻寬達23 %,天線幅射強度前後比超過10 dB。最後,為增加天線使用效率,本論文提出可重置雙頻操作的CP天線設計。在天線原型上增加了五個二極體,利用不同的開關順序,重置輻射元件結構,達成頻率切換的目的。由實驗結果可知此雙頻天線的頻率比很小,並提供同極化輻射。
Many modern communication systems use circular polarization (CP) wave propagation in order to maximize the polarization efficiency component of the link budget. This dissertation explores a systematic, evolutionary-computation-based design technique to obtain optimal or near-optimal CP performance for a single-fed wide slot antenna. Specifically, near-optimal impedance and axial-ratio bandwidth for any given operating frequency can be achieved without using the trial and error method. The kernel of the evolutionary design method is the Genetic Local Search (GLS) algorithm. Several key parameters were first investigated, and their effects on CP performance were verified by simulation. Followed by developing several different local search procedures, the GLS algorithm was then able to conduct an optimization process with fewer generations. The proposed design technique was applied and evaluated by using different slot shapes such as ellipse, equilateral triangle, and square. The antennas developed by the proposed method satisfy several of the requirements for DCS, PCS, UMTS, 802.11 a/b/g and HIPERLAN application. Furthermore, in order to satisfy the requirements of the long distance communication systems, the performances of the CP wide slot antenna were improved by integrating a director and a reflector to the CP wide slot antenna. By varying the positions of the director and the reflector respectively, variation on the antenna performances was investigated. Antenna prototype was constructed, and the measured results show that the proposed antenna can provide an average gain of 10 dBi within a CP operating bandwidth of 23 % and a front-to-back ratio of over 10 dB. Finally, in order to increase the usefulness of the antenna, a CP microstrip antenna with dual-frequency operation was proposed and studied. Five PIN diodes were attached to the proposed antenna, and the ability to reconfigure the CP performances is achieved by switching these diodes in a certain sequence. The measured results demonstrated the proposed antenna can work at dual-frequency with a small frequency ratio and the same polarization.
URI: http://hdl.handle.net/11455/17966
其他識別: U0005-1008200814185400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008200814185400
Appears in Collections:應用數學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.