Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1805
標題: PCB散熱層面積與散熱銅柱對於QFN封裝散熱特性之影響
The effect of PCB thermal layer area and copper column on the heat transfer characteristic of QFN package
作者: 呂保儒
Lu, Bau-Ru
關鍵字: Printed Circuit Board
印刷電路板
Thermal Layer
Thermal Via
Thermal Copper Column
QFN Package
Natural Convection
散熱層
通氣孔
銅柱
QFN封裝
自然對流
出版社: 機械工程學系所
引用: [1] Gordon N. Ellison著; 洪英輝、楊安石編譯。電子裝備系統熱傳分析。初版。臺北市;全華圖書出版民,76年。 [2] Bruce R, Munson, Donald F. Young, and Theodre H. Okiishi著; 杜鳳棋譯。流體力學。第2版,臺北市: 高立圖書,民84年。 [3] J.P. Holman著; 王鎮雄、朱朝煌、李世榮、劉傅仁、蔡豐欽合譯。熱傳遞學。第8版。臺北市:麥格羅希出版; 高立圖書發行,民89年。 [4] 李祥編著。流體力學觀念剖析。第6版。臺北市: 鼎茂圖書,民90年。 [5] Mohan. Undeland. Robbins著:江炫樟編譯。電力電子學。第三版。臺北市:全華圖書,民92年。 [6] 劉君愷,PCB 階層之散熱效應評估,表面黏著技術三十一期,民89年 [7] 劉君愷,IC 構裝之散熱對策,工業材料雜誌,第171 期,第123-129頁,民國90年3月 [8] 鄭宗杰、余致廣、劉君愷、蔡伯晨,鄭明欣,FC-PBFA之熱流模擬簡介,奈米通訊第十一卷第四期P17~21 [9] 羅世閔。「CFD與模流分析在薄式電子構裝設計與分析研究」。國立雲林科技大學機械工程學系,碩士論文,民90年。 [10]沈信安,「四方扁平薄型電子構裝(TQFP)之散熱效能分析」。國立清華大學動力機械工程學系,碩士論文,民90年。 [11]何承益,「BGA 封裝之熱傳分析與最佳化」。國立成功大學機械工程學系,碩士論文,民91年。 [12]謝佑宜,「電子構裝熱性能分析」。國立雲林科技大學機械工程學系,碩士論文,民92年。 [13]盧峻德。「運用Flotherm 配合田口法於伺服器之散熱管理」。大同大學機械工程研究所,碩士論文,民93年。 [14]林美伶。「Flotherm 在矩形管之流場及熱對流場之數值分析」。國立台灣海洋大學機械與輪機工程學系,碩士論文,民93年。 [15]徐梓青,「FC-BGA 構裝體的數值分析與最佳化研究」。國立成功大學機械工程學系,碩士論文,民93年。 [16]陳文彥,「半導體封裝原理及技術」。工業技術研究院電子工業研究所,課程講義,民96年。 [17]S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980. [18]A. D. Kraus and A. Bar-Cohen, Thermal Analysis and Control of Electronic Equipment, McGraw-Hill, New York, 1983. [19]J.P. Holman, “Heat Transfer”9th ed. New York: The McGraw-Hill companies, Inc,1963 [20]I.G. Currie, “Fundamental Mechanics of Fluids”2ed ed. New York: The McGraw-Hill companies, Inc,1974 [21]Kirk D.Hagen, “Heat Transfer with Applications”, Prentice Hall International,Inc,1988 [22]Steve Laur , “Guidelines for Preventing Boot-to-Phase Stress on Half-Bridge MOSFET Driver ICs “ Intersil application , 2004 [23]R. I. Issa, “Solution of the Implicit Discretized Fluid Flow Equations by Operator-Splitting,” J. of Computational Physics, vol. 62, pp. 40-65, 1985. [24]R. I. Issa, B. Ahmadi-Befrui, K. R. Beshay, and A. D. Gosman, “Solution of the Implicit Discretized Reacting Flow Equations by Operator-Splitting,” J. of Computational Physics, vol. 93, pp. 388-410, 1991. [25]M. H. N. Naraghi and V. W. Antonetti, “Macro-Constriction Resistance of Distributed Contact Contour Areas in a Vacuum Environment,” Enhance Cooling Techniques for Electronic Applications, Proceedings of the ASME Winter Annual Meeting, vol. 263, pp. 107-114, 1993. [26]S. Lee, T. F. Lemczyk, and M. M. Yovanovich,, “Analysis of Thermal Vias in High Density Interconnect Technology,” Proceedings of the Eighth IEEE SEMI-THERM Symposium, pp. 55-61, 1992. [27]S. Hashemi and D. Walshak, “Enabling Technologies for Fewing-Chip Packaging: A Study in Thermal Performance,” Proc. ASME Winter Annual Meeting, EEP- vol. 6, pp. 35-41, 1993. [28]F. Christiaens, E. Beyne, and J. Berghmans, “Modeling of Thermal Vias in Thin Film Multichip Modules,” Proc. I-THERM IV, Intersociety Conf.on Thermal Phenomena in Electronic Systems, pp. 101-107, 1994. [29]R. S. Li, “Optimization of Thermal Via Design Parameters Based on an Analytical Thermal Resistance Model,” The Sixth Intersociety Conf. On Thermal and Thermo-mechanical Phenomena in Electronic Systems (ITHERM), pp. 475-480, 1998. [30]S.L.LEE and R.Y.TZONG, ”Artificial pressure for pressure-linked equation”, International journal of heat and mass Transfer ,Vol.35,No.10,pp.2705-2716,1992. [31]L. T. Yeh, “Review of Heat Transfer Technologies in Electronic Equipment,” J. of Electronic Packaging, vol. 117, pp. 333-339, 1995. [32]C. Chapman, “The Basics of Package/Device Cooling,” Electronic Packaging & Production, pp. 57-60, May 1998. [33]Bar-Cohen, A., Kraus, A. D. and Davidson, S. F. , 1983, “ThermalFrontiers in the Design and Packaging of Microelectronic Equipment,”Mechanical Engineering No. 6, pp. 53-59. [34]All published Jedec thermal standards are available for download at no charge on organization’s web site (www.jedec.org) [35]Semiconductor Equipment and Materials International (www.semi.org)
摘要: 摘 要 點負載之設計為降壓使用,而內部的控制開關晶片在切換開關時會有功的損失,當產生熱能無法有適當的路徑逸散時,會時內部使溫度持續上升,溫度上升會使整個封裝好的降壓模組效率降低,進而導致脈寬調變控制器的IC與內部其它元件損毀。依封裝型式不同,散熱路徑的設計也會有所不同,而本文所探討的QFN封裝型式的散熱路徑是以印刷電路板散熱。電子產品在輕、薄、短、小的趨勢下,所有元件的空間一直在縮小,因此本文以在最小空間達到PCB散熱效果為目標進行散熱設計。 本文採用CFD模擬軟體Flotherm作為模擬計算工具,模擬改變散熱層面積與厚度,通氣孔內的材質、數量與排列方式,以此散熱設計達到印刷電路板散熱的效果,並將CFD數值模擬結果與一維模式做比較。提供散熱設計者在CFD模擬流程與散熱對策流程,與在印刷電路板的散熱方法與影響,減少散熱設計者所浪費的時間與成本。
Abstract Because POL has direct current to direct current (DC/DC) design, its inner control chip will die from switching, which could cause power loss and produce heat. If the heat cannot be dissipated or removed by appropriate means, the temperature will go higher and higher and therefore, affects the efficiency of POL. And the high temperature of IC in Pulse Wide Modulation (PWM) will increase continuously and will cause damage to the switching. The heat conduction way differs with different package. Quad Flat Non-leaded (QFN) package heat conduction depends on PCB, which is further discussed in this thesis. In addition, with the tendency of choosing light, thin, short, tiny electronic items among consumers, electronic companies are developing smaller and smaller productions for easy use. Thus, depending on PCB to remove heat energy in an restricted space is the main discuss in this thesis. This come from CFD(Computational Fluid Dynamics) systems and Flotherm tools. It can change the size and thickness, themal via supply, amount and produce systems heat thermal layer to require heat and quality. Compare to CFD, it have make a quality.
URI: http://hdl.handle.net/11455/1805
其他識別: U0005-0708200715253200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708200715253200
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.