Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/18101
標題: Design and analysis of the Equivalent circuit for Electrochemical Impedance of Dye sensitized Solar cells.
作者: 巴黛芬
Balasubramaniam, Parvathy devi
關鍵字: DSSC
TiO2 & ZnO
EIS
出版社: 應用數學系所
引用: [1] L. Kazmerski, “Best Research Cell Efficiencies”, March 28, 2006. [2] B. O'Regan and M Gratzel, Nature 1991, 353, 737-740. [3] M. Gratzel, Nature 2001, 414, 338-344. [4] M. Gratzel, J. Photo chem. and Photobio. A:Chem. 2004, 164, 3-14. [5] A. Hagfeldt and M. Gratzel, Chem. Rev. 1995, 95, 49-68. [6] K. Kalyanasundaram and M. Gratzel, Coord. Chem. Rev. 1998, 177, 347-414. [7] M. Gratzel, Current Opinion in Colloid and Interface Science 1999, 4, 314-321. [8] Cahen et al., J.Phys.Chem. B 2000, 104, 2053-2059. [9] A. Fujishima et al., Sol. Energy Mater. Sol. Cells 2004, 81, 197-203. [10] Vlachoppuios et al, J.Am.Chem.Soc. 1988, 110, 1216 [11] M. Gätzel, J.Photochem. & Photobio:chem.. 2003, 164, 3 [12] M. Gätzel, Nature 2001, 414, 338 [13] M. Gätzel, Nature 2000, 403, 363 [14] A. Hageldt, M. Gätzel, Chem.Rev. 1999, 95, 49 [15] J. Nelson, Mater. Today, 2002, 20 [16] P.Wang et al., Nature Mater. 2002, 20 [17] Tan et al.Langmuir, 2004, 20, 2934 [18] B. Pradhan and A. J. Pal, solar Energy Mater. & Solar cell, 2004, 8, 469 [19] D. Gebeyehu, CJ. Brabec and N. S. Sariciftci, Thin Solid Films, 2002, 403, 271 [20] K Tennakone et al., J.Phys.D: Appl. Phys, 1998, 31, 1492 [21] P.Wang et al., J.Phys.Chem.B, 2003, 107, 13280 [22] M. Gätzel, Current Opinion in Colloid & Interface Science, 1999, 4, 1314 [23] K. kalyanasundaram and M. Gätzel, coord. Chem.. Rev, 1998, 77, 347 [24] Nanoporous TiO2 films in dye-sensitized solar cells., www.docin.com/p-17634202.html [25] C. Barrett, T. B. Massalski, “Structure of Metals 3rd revised edition: Crystallographic Methods, Principles, and Data”, International Series on Materials Science and Technology, 35, (Pergamon Press, Oxford, New York, etc., 1987). [26] M. Gräzel, “Photo electrochemical cells”, Nature, 2001, 414, 338. [27] U. Ozgur et al. "A comprehensive review of ZnO materials and devices" J. Appl. Phys. 2005, 89, 041301 [28] Landolt-Bornstein, New Series, Group III, Vol. 17 B, 22, 41B (Ed.: U. Rossler), Springer, Heidelberg, 1999. [29] E. Bae, W. Choi, J. Park, H.S. Shin, S.B. Kim, J.S. Lee, J. Phys. Chem. B, 2004, 108, 14093-14101 [30] M. Nilsing, P. Persson, L. Ojamaee, Chem. Phys. Lett., 2005, 415, 375-380. [31] H. Park, E. Bae, J. J. Lee, J. Park, W. Choi, J. Phys. Chem. B, 2006, 110, 8740-8749. [32] A. Vittadini, A. Selloni, F.P. Rotzinger, M. Graetzel, J. Phys. Chem. B, 2000, 104, 1300-1306. [33] K. S. Finnie, J. R. Bartlett, J. L. Woolfrey, Langmuir, 1998, 14, 2744-2749. [34] M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Graetzel, J. Phys. Chem. B, 2003, 107, 8981-8987. [35] V. Thavasi, V. Renugopalakrishnan, R. Jose a, S. Ramakrishna Materials Science and Engineering R 2009, 63, 81-99. [36] K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, S. Murasawa, J. Electro anal. Chem., 1995, 396, 27-34. [37] LeeHan Chiou, Wu Feng Institute of Technology, Institute of Opto-Electro-Mechanical and Materials, Master''s Thesis, 2008. [38] Ma, T., Fang, X., Akiyama, M., Inoue K., Noma, H.,Abe, E., “Properties of several types of novel counter electrodes for dye-sensitized solar cells”, Journal of Electro analytical Chemistry and Photobiology A: Chemistry, 2004, 574, 77-83. [39] Ref. Modeling photovoltaic system-Luis castaner [40] Electrochemical impedance spectroscopy: 1 Basic principle [41] Francisco Fabregat-Santiago, Juan Bisquert, Emilio Palomares, J. Phys. Chem. C, 2007, 111, 6550-6560. [42] Graztel, M Nature 1991, 414, 338 [43] Liyuan Han, Naoki Koide, Yasuo Chiba, and Takehito Mitate, Appl. Phys. Lett., 2004, 84, 13, 29
摘要: The initial studies of my thesis focus on the fabrication of dye-sensitized solar cells based on TiO2 and ZnO. DSSCs comprise an electrode consisting of a Nano crystalline titanium dioxide (TiO2) modified with a dye and applied to an F-doped SnO2 glass substrate; a counter electrode consisting of another F-doped SnO2 glass substrate coated with a thin Pt layer; and between the electrodes an electrolyte solution with a dissolved iodide ion/tri-iodide ion (I_/I3_) redox couple, we obtained the overall energy conversion efficiency of 5.45% under sun illumination for TiO2 DSSCs. Then I prepared ZnO Nanoparticles DSSC, we obtained the overall energy conversion efficiency of 1.35% under sun illumination and their efficiency on different dyes are compared. The second part of my present work focuses on an improved method to estimate the equivalent circuit parameters for the dye-sensitized solar cells (DSSCs). The aim of this work is to introduce the electrochemical impedance data explanation by equivalent electrical circuits. It is founded that, several different groups of values of equivalent circuit parameters can fit well to the same experiment-measured impedance data. Internal resistance depends upon the resistance element in the circuit. Internal resistance of the solar cell increases, when Fill Factor decreases.
The initial studies of my thesis focus on the fabrication of dye-sensitized solar cells based on TiO2 and ZnO. DSSCs comprise an electrode consisting of a Nano crystalline titanium dioxide (TiO2) modified with a dye and applied to an F-doped SnO2 glass substrate; a counter electrode consisting of another F-doped SnO2 glass substrate coated with a thin Pt layer; and between the electrodes an electrolyte solution with a dissolved iodide ion/tri-iodide ion (I_/I3_) redox couple, we obtained the overall energy conversion efficiency of 5.45% under sun illumination for TiO2 DSSCs. Then I prepared ZnO Nanoparticles DSSC, we obtained the overall energy conversion efficiency of 1.35% under sun illumination and their efficiency on different dyes are compared. The second part of my present work focuses on an improved method to estimate the equivalent circuit parameters for the dye-sensitized solar cells (DSSCs). The aim of this work is to introduce the electrochemical impedance data explanation by equivalent electrical circuits. It is founded that, several different groups of values of equivalent circuit parameters can fit well to the same experiment-measured impedance data. Internal resistance depends upon the resistance element in the circuit. Internal resistance of the solar cell increases, when Fill Factor decreases.
URI: http://hdl.handle.net/11455/18101
其他識別: U0005-1208200916273000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208200916273000
Appears in Collections:應用數學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.