Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1814
標題: 結合擬合誤差與影像對比進行多形貌不連續之定位研究
Retrieval of phase maps with multiple-physical discontinuities by the hybrid of image process technique & least square error
作者: 林建彰
Lin, Chien-Chang
關鍵字: Minimum LP-norm
Minimum LP–norm
ESPI
optical measurement
least square error
image processdiscontinuity
雷射斑點干涉術
光學量測
擬合誤差
影像對比
形貌不連續
出版社: 機械工程學系所
引用: [1] O. J. Lobberg, “Recent developments in video speckle interferometry”, Optucal Engineering, Vol. 38, pp. 157-194, (1993). [2] R. Cusack, J. M. Huntley and H. T. Goldgrein, “Improved noise immune phase unwrapping algorithm”, Applied Optics, Vol. 34, pp. 781-789, (1995). [3] W. W. Macy, “Two-dimensional fringe-pattern analysis”, Applied Optics, Vol. 22, pp. 3898-3901 (1983). [4] B. Widrow and S. Strarns, “Adaptive Signal Processing”, Prentice-Hall, Englewood Cliffs, N. J. , (1995). [5] J. J. Chyou, S. J. Chen and Y. K. Chen “Two-dimensional phase unwrapping with a multichannel least-mean-square algorithm”, Applied Optics, Vol. 43 (30), pp. 5655-5661, (2004). [6] D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping”, Journal of the Optical Society of America A, Vol. 4, pp. 276-280, (1987). [7] 陳森案,”相位重建之影像處理技術應用於光學量測之研究”,國立中興大學機械研究所碩士論文,pp. 12-18, (2002)。 [8] D. C. Ghiglia and M. D. Pritt, “Two-dimensional Phase Unwrapping Theory”, Algorithms and Software, Wiley, New York, pp. 46-50, (1998). [9] D. C. Ghiglia and L. A. Romero, “Minimum -Norm two-dimensional phase unwrapping”, Journal of the Optical Society of America A, Vol. 13 (10), pp. 1999-2012, (1996). [10] D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods”, Journal of the Optical Society of America, Vol. 11 (1), pp. 107-117, (1994). [11] H. Y. Chang, C. W. Chen, C. K. Lee and C. P. Hu, “The tapestry cellular automata phase unwrapping algorithm for interferogram analysis”, Optics and Lasers in Engineering, Vol. 30 (6), pp. 487-502 , (1998). [12] 陳聖奇,”結合Minimum –norm與區塊接合技術應用於EPSI之相位展開研究” ,國立中興大學機械工程學研究所碩士論文, pp. 50-56, (2005)。 [13] M. A. Herráez, D. R. Burton, M. J. Lalor and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path”, Applied Optics, Vol. 41 (35), pp. 7437-7444, (2002). [14] R. Jain, R. Kasturi and B. G. Schunck, “Machine Vision”, Mcgraw-Hill, MIT press, pp. 83-84, (1995). [15] A. McAndrew, “Introduction to digital Image Processing with MATLAB”, Thomson learning, pp. 340-345, (2005). [16] S. B. Kim and Y. S. Kim, “Least squares phase unwrapping in wavelet domain”, Image Signal Process, Vol. 152 (10), pp. 261-267, (2005). [17] Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations”, Optics and Lasers in Engineering, Vol. 45, pp. 304-317, (2007). [18] Q. Kemao, S. S. Hock and A. Anand, “Fault detection by interferometric fringe pattern analysis using windowed Fourier transform”, Measurement Science and Technology, Vol. 16, pp. 1582-1587, (2005). [19] S. Jarle and T. Torfinn, “Two-Dimensional Phase Unwrapping Using Robust Derivative Estimation and Adaptive Integration”, IEEE Transactions on Image Processing, Vol. 11 (10), (2002). [20] Y. Zhu1, L. Liu, Z. Luan and A. Li, “A reliable phase unwrapping algorithm based on the local fitting plane and quality map”, Journal of Optics A, Vol. 8, pp. 518-523, (2006). [21] Y. Zhu, Z. Luan, Q. Yang, D. Li, W. Lu and L. Liu, “Improved reliability-guided phase unwrapping algorithm based on the fringe modulation and second-order phase difference”, Optik, Vol. 118, pp. 175-180, (2007). [22] T. Oishi, A. B. Suksmono and A. Hirose, “Proposal of Bilinear Surface Compensation of Distortion in Least Squares Phase Unwrapping”, IEEE Transactions on Image Processing, pp. 5463-5466, (2005). [23] Y. Lua, X. Wangb, X. Zhanga, “Weighted least-squares phase unwrapping algorithm based on derivative variance correlation map”, Optik, Vol. 118, pp. 62-66, (2007). [24] Y. M. He, C. J. Tay and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns” Optics and Lasers Technology, Vol 30, pp. 27-31, (1998). [25] N. A. Ochoa, F. Mendoza Santoyo, A. J. Moore and Perez Lopez, “Contrast enhancement of electronic speckle pattern interferometry addition fringes”, Applied Optics, Vol. 36, pp. 2783, (1997).
摘要: 目前的相位展開技術已可以有效解決高雜訊的包裹相位圖,現在有待克服的是包裹相位圖具有高雜訊且本身存在不連續的現象的問題。本論文主要是以Minimum LP–norm與區塊接合理論作為相位展開技術的主要方法,利用擬合誤差與影像對比來判斷並修正區塊中搬移錯誤的部分,使得相位能順利展開完成。 我們利用電腦模擬出各種不同形貌不連續情況的包裹相位圖,以及實際利用雷射斑點干涉術所得之形貌不連續包裹相位圖來測試,利用擬合誤差可以將問題區塊正確的標示出來,而利用影像對比也能找出形貌不連續分岔點並擬合出形貌不連續線,因此能有效的將相位展開錯誤的部分修正,並且將修正過後的相位圖與原始正確的相位圖比較,誤差可降至百分之一以下。
The present phase unwrapping technology has solved the problem that the fringe map has high miscellaneous signals. The problems we need to overcome are the wrapped map with high miscellaneous signals and discontinuity phenomenon. The main approach to phase unwrapping technology in my paper is based on Minimum LP-norm. With submap-stitching theory, the image process technique and least square error are used to estimate the wrong submaps and to modify the wrong submaps. This enables phase unwrapped successfully. We simulate the wrapped phase maps of different types of physical discontinuities, and examine the wrapped phase maps which are physically discontinuous with electronic speckle pattern interferometry. We adopt least square error to estimate the wrong submaps and use image process technique to find out points of physical discontinuities and use those points to fit lines of physical discontinuities. Therefore, we are able to modify wrong submaps efficiently. The modified unwrapped phase maps are compared with original correct phase maps. The probability of error would be reduced under one percent.
URI: http://hdl.handle.net/11455/1814
其他識別: U0005-0908200715295700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908200715295700
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.