Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1833
DC FieldValueLanguage
dc.contributor李明威zh_TW
dc.contributor黃金花zh_TW
dc.contributor.advisor王國禎zh_TW
dc.contributor.author陳逸宏zh_TW
dc.contributor.authorChen, Yi-Hungen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-05T11:41:47Z-
dc.date.available2014-06-05T11:41:47Z-
dc.identifierU0005-1207200716353000zh_TW
dc.identifier.citation[1] B. O’Regan and M Grätzel, Nature 353, 737, (1991). [2] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtels, J. Salbeck, H. Spreitzer, M. Grätzel, Nature, 395, 583, (1998). [3] M Grätzel, Nature 414, 15, 338, (2001). [4] M. DüRR, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, Nature Materials, 4, 607, (2005) [5] A. Fujishima, K. Honda, Nature 238, 37, (1972) [6] H. Shibata, Y. Ogura, Y. Sawa, and Y. Kono, Biosci. Biotechnol. Biochem., Vol. 62, No. 12, pp. 2306, (1998) [7] H. Shibata, N. Noda, Y. Ogura, K. Sogabe, and Y. Sawa, Biosci. Biotechnol. Biochem., Vol. 64, No. 8, pp. 1751, (2000) [8] S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, Nanotechnology, 16, 850, (2005). [9] W. J. Yu, Y. S. Cho, G. S. Choi, and D. Kim, Nanotechnology, 16, S291, (2005). [10] T. Yanagishita, K. Nishio, and H. Masuda, Adv. Mater., 17, No. 18, 2241, (2005). [11] http://pc11.lssh.tp.edu.tw/finaldown/download/200210291204第3-3章.pdf [12] A. Fujishima and K. Honda, Nature 238, 37, (1972). [13] R. Wang,K. Hashimoto,A. Fujwashima, Nature 388, 431, (1997). [14] Y. Ohko, T. Tatsuma, T. Fuzii, K. Naoi, C. Niwa, Y. Kubota, A. Fujwashima,Nature Mat. 2, 29, (2002). [15] G.P. Burn,J. Appl. Phys. 65, 2095, (1989). [16] M. Kaneko, I. Okura, eds., Photocatalysis, Springer Verlag, (2003). [17] A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C:Photochem. Rev. 1, 1, (2000). [18] O. Khaselev, J. A. Turner, Science 280, 425, (1998). [19] Kawaguchi, H. EnViron. Technol. Lett. 5, 471, (1984). [20] Augugliaro, V. Palmisano, L. Sclafani, A. Minero, C. Pelizzetti, E. Toxicol. EnViron. Chem. 16, 89, (1988). [21] Okamoto, K. Yamamoto, Y. Tanaka, H. Tanaka, M. Itaya, A. Bull, Chem. Soc. Jpn. [22] Matthews, R. W., J. Catal. 97, 56, (1986). [23] A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem. 94, 892, (1990). [24] A. Sclafani, J. M. Herrmann, J. Phys. Chem. 100, 13655, (1996). [25] Phase Diagrams for Ceramists Figure , The American Ceramic Society, Inc. 76, 4150, (1975). [26] Jillian F. Banfield, Brian L. Bischoff and Marc A. Anderson, Chemical Geology. 110, 211, (1993). [27] M.S.Ahmed & Y.A.Attia , J.Non-crystalline Solids , 186, 402, (1995). [28] S.D.Richardson , A.D.Thruston , T.M.Collette , K.S.Patterson , B.W.Lykins , J.C. Ireland , Environ.Sci.Technol. , 30, 3327, (1996). [29] Nosaka Y. , Fox M. A. , J. Phys. Chem. , 92, 1983, (1988). [30] M.Anpo , Studies in surface Science and Catalysis , 130, 157, (2000). [31] K.Wilke , H.D.Breuer , J.Photochem.Photobiol.A:Chem , 121, 49, (1999). [32] J.A.Navio , G.Colon , M.Macias , C.Real , M.I.Litter , Appl.Catal.A:General , 177, 111, (1999). [33] W.Choi , A.Termin , M.R.Hoffmann , J.Phys.Chem. , 98, 13669, (1994) . [34] V.Brezova , A.Blazkova , L.Karpinsky , J.Groskova , B.Havlinova , V.Jorik , M.Ceppan , J.Photochem.Photobiol.A:Chem. , 109, 177, (1997). [35] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295, 2425, (2002). [36] Y. Yu, J. C. Yu, J, Kwok,Applied Catalysis A:General 289, 186, (2005). [37] C. Dechakiatkrai, J. Chen, C. Lynam, Journal of The Electronchemical Society, 154 (5), A407, (2007). [38] 張智棋、李佳家、陳建忠,“一維奈米同軸陣列式複合材料的製備,”第九屆奈米工程暨微系統技術研討會,(2005)。 [39] H. Asoh et al., J. Electrochem. Soc. 148, B152, (2001). [40] H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, L127, (1997). [41] G. E. Thompson, Thin Solid Film 297, 192, (1997). [42] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J Appl. Phys 84, 6023, (1998). [43] J. Zhu, J. Z. F. Chen, and M. Anpo, Mater. Lett., 59, 3378, (2005). [44] L. Zhang, M. Wan, and Y. Wei, Synth. Met., 151, 1, (2005). [45] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, Sens. Actuators B, 68, 189, (2000). [46] 陳維正, 王國禎, “ 仿葉綠體機制之奈米光電池技術研究,” 國立中興大學機械工程研究所碩士學位論文, 民 95。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/1833-
dc.description.abstract本研究乃是承續本實驗室先前已開發出之仿葉綠體機制之新型光太陽電池技術,由提升仿葉綠體囊膜之H+通過率以及人工酵素之光催化效率兩方面著手,提出能進一步提升光電性能之技術。 在提升仿葉綠體囊膜之H+通過率方面,研究結果發現AAO奈米孔洞之孔徑越大所產生之光電流越大。在人工酵素之光催化效率提升方面, 研究結果發現CNT的加入會改變TiO2之能隙,而抑制電子-電洞對再結合的發生,由於電子-電洞之氧化還原能力增強,因而提升光催化效果。研究中分別測試不同厚度之TiO2與不同高度之CNT陣列,實驗證實CNT相對於TiO2之含量愈高,產生之光電流愈強。亦即較高之CNT陣列厚度結合較薄的TiO2塗層會有較佳之光電效應。而研究中亦發現人工酵素之尺寸愈大光電流增加速率愈大。 以孔徑約150nm之磷酸AAO奈米孔洞薄膜做為離子通道,厚度約6.78μm之CNT/14nm之TiO2做為人工酵素,則光電流有極大之提升。zh_TW
dc.description.abstractIn this research, schemes to increase the photocurrent efficiency of the chloroplastmimic photovoltaics were investigated. Our emphases were on both the increasing the hydrogen ions flux through the artificial thylakoid membrane and the photolysis efficiency improvement of the artificial chlorophyll. In the increase of the hydrogen ions flux through the artificial thylakoid membrane, it is found that the larger the nanopore of the artificial thylakoid membrane is, the bigger the photocurrent is. In the improvement of the artificial chlorophyll's photolysis efficiency, several feasible solutions were obtained. Firstly, the standing carbon nano tube (CNT) array changes the band gap of the titanium dioxide such that the recombinations of the photo excited electron-hole pairs are restricted; therefore, the photolysis efficiency can be enhanced due to the increase of the redox reaction ability of the photo excited electron-hole pairs. Secondly, it was found that the photocurrent could be enhanced by the increase of the content ratio of the CNT to the titanium dioxide. It indicates that a thicker CNT array combines with a thinner titanium dioxide film has better efficiency. Investigation results show that the parameter set combining an AAO membrane with 150 nm pores and a 6.78um high CNT array deposited with a 14 nm think titanium dioxide film produces relatively high photo current.en_US
dc.description.tableofcontents目錄 摘要..........................................................................................................Ⅰ 英文摘要..................................................................................................Ⅱ 目錄……………………………………………………………………..Ⅲ 圖目錄…………………………………………………………………..Ⅵ 表目錄……………………………………………………………….... Ⅸ 第一章 緒論……………………………………………………………..1 1-1 研究背景與動機……………………………………………….1 1-2 論文架構……………………………………………………….5 第二章 理論基礎與文獻回顧…………………………………………..7 2-1 光合作用……………………………………………………….7 2-1-1 光反應………………………………………………….8 2-1-2 暗反應.............................................................................9 2-2 半導體光觸媒材料-二氧化鈦……………………………….10 2-2-1 二氧化鈦簡介………………………………………...10 2-2-2 二氧化鈦的物理性質………………………………...11 2-2-3 二氧化鈦的光化學性質……………………………...13 2-2-4 二氧化鈦的光催化反應……………………………...13 2-2-5 光催化反應原理……………………………………...15 2-2-6 TiO2光催化效果之提升………………………………17 2-3 量子尺寸效應………………………………………………...18 2-3-1 量子尺寸效應理論…………………………………...18 2-3-2 量子尺寸效應對光催化效率之影響………………...18 2-3-3 量子尺寸效應於光催化效率之應用………………...19 第三章 仿葉綠體機制之太陽光電池製作……………………………21 3-1 仿類囊體膜之奈米孔洞薄膜製備…………………………...21 3-1-1 陽極氧化鋁膜製作…………………………………...22 3-1-2草酸陽極氧化鋁膜製作……………………………….23 3-1-3 磷酸陽極氧化鋁膜製作……………………………...28 3-2 分解水之人工酵素CNT/TiO2複合材料製作…………….…29 3-2-1 CNT/TiO2複合材料製作………………………….…..29 3-2-2 CNT/TiO2複合材料之UV-VIS吸收光譜量測….……34 3-3 仿葉綠體機制之光電池製作與量測………………………...35 第四章 仿葉綠體機制太陽光電池之光電流量測與性能提升之探討38 4-1 初始仿葉綠體機制太陽光電池……………………………...38 4-2 提升仿葉綠體機制太陽光電池光電流之探討……………...39 4-2-1 仿類囊體膜AAO之選用與光電流效應之探討……..40 4-2-2 人工酵素CNT/TiO2之結構對光電流之影響……….40 4-3 仿葉綠體機制太陽光電池之最佳化參數…………………...46 4-4 AAO奈米絲/TiO2人工酵素………………………………….48 4-4-1 AAO奈米絲之製備…………………………………...48 4-4-2 AAO奈米絲/TiO2之光電流量測……………………..49 第五章 結論與未來展望………………………………………………50 5-1 結論…………………………………………………………...50 5-2 未來展望……………………………………………………...51 參考文獻………………………………………………………………..52zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1207200716353000en_US
dc.subjecthloroplastmimic photovoltaicsen_US
dc.subject太陽光電池zh_TW
dc.subjectcnten_US
dc.subjectphotocurrenten_US
dc.subject仿葉綠體zh_TW
dc.subject仿生zh_TW
dc.subject奈米碳管應用zh_TW
dc.title氫離子濃度梯度驅動之太陽光電池之性能提升zh_TW
dc.titlePerformance improvement of the chloroplastmimic photovoltaicsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:機械工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.