Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/18587
標題: 使用多重網格有限元素方法和雙重網格有限差分法解非線性特徵值問題
Multigrid and two-grid discretization schemes for nonlinear eigenvalue problems
作者: 林雅菁
Lin, Ya Jing
關鍵字: nonlinear elliptic eigenvalue problems
非線性橢圓特徵值問題
bifurcation points
continuation methods
multigrid methods
two-grid schemes
Lanczos methods
MINRES
SYMMLQ
分歧點
延續法
多重網格法
雙重網格法
Lanczos 方法
MINRES
SYMMLQ
出版社: 應用數學系
摘要: 在此篇論文裡,我們研究多重網格法應用在延續法中,來解非線性橢圓特徵值問題,並且討論利用雙重網格法來解定義在L型曲域的線性特徵值問題。我們首先用有限元素法將偏微分方程離散化,在多重網格法的V-循環,W-循環以及完全的多重網格V-循環中,使用Lanczos法、MINRES和SYMMLQ作為其中的鬆弛法。我們比較這些鬆弛法在多重網格中的效益。我們亦討論雙重網格-中央差分法在L型的區域中解線性特徵值問題。由數值的結果中我們可以知道 Lanczos法是相當有效的。最後我們將所得結果繪製成圖表並做結論。
We study multigrid methods in the context of continuation methods for semilinear elliptic eigenvalue problems, where the Lanczos method, the MINRES and the SYMMLQ are used as linear solvers. The semilinear elliptic eigenvalue problems are discretized by six-node triangular elements. We compare the efficiency of these linear solvers in the context of multigrid V-cycle, W-cycle and the full multigrid V-cycle (FMG) schemes. Next, we study the two-grid centered difference discretization scheme for the eigenvalue problem defined on an L-shaped domain. Our numerical results show that the accuracy of computed eigenpairs is improved efficiently. Moreover, compared with the performance of (preconditioned) MINRES and SYMMLQ, the (preconditioned) Lanczos algorithm is still very competitive.
URI: http://hdl.handle.net/11455/18587
Appears in Collections:應用數學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.