Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/18651
DC FieldValueLanguage
dc.contributor.advisor郭紅珠zh_TW
dc.contributor.advisorH. J. Kuoen_US
dc.contributor.author陳玉正zh_TW
dc.contributor.authorY.J.Chenen_US
dc.date1993zh_TW
dc.date.accessioned2014-06-06T07:03:52Z-
dc.date.available2014-06-06T07:03:52Z-
dc.identifier.urihttp://hdl.handle.net/11455/18651-
dc.description.abstract我們得到與 Aleksandrov 和 Bakel'man 極大值原理、Harnack不等式及 Krylov 和 Safonov 的 Holder 估計相似結果之離散化橢圓系統差分不等 式。這些系統與一些隨機控制問題有很密切關連。然而這些有兩面障礙的 二階橢圓系統不等式之黏性近似解﹐引起我現在所學習的動機。zh_TW
dc.description.abstractWe derive a discrete analogues for systems of elliptic difference inequalities of the Aleksandrov and Bakel'man maximum principle and Harnack inequalities and Holder estimates of Krylov and Safonov. These systems are closely related to some stochastic control problems. The approximation of viscosity solutions of systems of second order elliptic inequalities with bilateral obstacles provided the motivation for the present study.en_US
dc.language.isoen_USzh_TW
dc.publisher應用數學研究所zh_TW
dc.subjectApriori Estimatesen_US
dc.subject橢圓系統差分不等式zh_TW
dc.subjectDiscreteen_US
dc.subjectMax. Principleen_US
dc.subjectHarnack and Holder Estimateen_US
dc.subjectApriori 估計zh_TW
dc.subject離散狀態zh_TW
dc.subject兩面障礙zh_TW
dc.subject差分運算zh_TW
dc.title橢圓系統差分不等式的一些 Apriori 估計zh_TW
dc.titleApriori Estimates for System of Elliptic Difference Inequalitiesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:應用數學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.