Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/18659
標題: 反應-擴散問題的多重分歧
Multiple bifurcations generated by mode interactions in a reaction-diffusion problen
作者: 廖益賢
Y.S.Liao
關鍵字: Reaction-diffusion system
反應-擴散系統
Brusslator equations
bifurcation
numerical continuation methods
unsymmetric Lanczos method
布魯塞爾方程
分歧
數值連續法
非對稱蘭左思方法
出版社: 應用數學系
摘要: 我們研究定義在羅賓邊界條件下的反應擴散方程的多重分支. 首先我們描述關於定均勻定態解的系統的線性穩定解. 然後描述多重分歧如何藉著模式互動產生,和這些多重分支能在對應的離散系統中被發現. 連續非對秤藍左司方法是被描述去找出離散解的軌跡. 對布魯塞爾的數值試驗是被發表的.
We study multiple bifurcations in a system of reaction-diffusion equations defined on a unit square with Robin boundary conditions. First we investigate linear stabilities of the system at the uniform steady state solution. Then we discuss how muliple bifurcations can be generted by mode interactions of the system, and how these multiple bifurcations can be preserved in the associated discrete system. A continuation-unsymmetric Lanczos algorthm is described to trace discrete solution curves. Numerical experiments on the Brusselator equations are reported.
URI: http://hdl.handle.net/11455/18659
Appears in Collections:應用數學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.