Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/18768
標題: 推廣型正比例勝算存活模式之應用
Applications of an extended proportional odds model for survival regression
作者: 陳禹捷
Chen, Yu-Chieh
關鍵字: 正比例勝算模型
proportional odds model
最大概似估計法
Wald檢定
maximum likelihood function
Wald test
出版社: 統計學研究所
引用: [1] S. Bennett (1983) , Analysis of Survival Data by the Proportional Odds Model , Statistics in Medicine , Volume 2 , p.273-277 . [2] K. Devarajan & N. Ebrahimi (2009) , Testing for covariate effect in the Cox proportional hazards regression model , Communications in Statistics - Theory and Methods , Volume 38 , Issue 14 , p.2333-2347 . [3] K. Devarajan & N. Ebrahimi (2011) , A semi-parametric generalization of the Cox proportional hazards regression model : Inference and Applications , Computational Statistics and Data Analysis , Volume 55 , Issue 1 , p.667-676 . [4] J. Huang & A.J. Rossini (1997) , Sieve Estimation for the Proportional Odds Failure-time Regression Model with Interval Censoring . Journal of the American Statistical Association , Volume 92 , No. 439 , p.960-967. [5] P. McCullagh (1980) , Regression Models for Ordinal Data , Journal of the American Statistical Association , No.2 , p.109-142 . [6] P. McCullagh & J.A. Nelder (1989) , Estimation in generalized linear models with random effects , Biometrika , Volume 78 , Issue 4 , p.719-727 . [7] S.A. Murphy , A.J. Rossini , A.W. van der Vaart (1997) , Maximum likelihood estimation in proportional odds model , Journal of the American Statistical Association , Volume 92 , No.439 , p.968-976 . [8] A.J. Rossini & A.A. Tsiatis (1996) , A Semiparametric Proportional Odds Regression Model for the Analysis of Current Status Data , Journal of the American Statistical Association , Volume. 91 , No 434 , p.713-721 . [9] S. Yang & Ross L. Prentice (1999) , Semiparametric inference in the proportional odds regression model, Journal of the American Statistical Association , Volume 94 , No. 445 , p.125-136 . [10] P.D. Allison (2010) , Survival Analysis Using SAS . The RECID data set: Arrest times for released prisoners . [11] T. Therneau , P. Grambsch , and T. Fleming (1990) , Martingale based residuals for survival models , Biometrika , Volume 77 , Issue 1 , p. 147-160 . [12] H. Akaike (1974) , A new look at the statistical model identification , IEEE Transactions on Automatic Control , Volume 19 , Issue 6 , p.716–723 . [13] G. Schwarz (1978) , Estimating the dimension of a model , Annals of Statistics , Volume 6 , No. 2 , p.461–464 .
摘要: 近年來,有序羅吉斯迴歸問題越來越多人討論,而我們常用正比例勝算模型來處理二元變量之間關係的估計。Bennett (1983)將McCullagh(1980)所建立的正比例勝算模型應用於存活分析中。本論文為延伸Bennett (1983)在存活分析下的正比例勝算存活模型,介紹一推廣型正比例勝算存活模型,假設基準函數為韋伯分布,估計出與變項相應參數,用實例來說明推廣型正比例勝算模型之運用,最後給予結論並在後續討論中使用” Self-consistency algorithm”疊代來估計基準函數。
URI: http://hdl.handle.net/11455/18768
其他識別: U0005-1107201214260400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1107201214260400
Appears in Collections:統計學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.