Please use this identifier to cite or link to this item:
標題: 6061鋁合金真空硬銲接合面之機械性能與氣密性
Mechanical Properties and Gas Sealing Capability of 6061 Aluminum Alloy Vacuum Brazing Joints
作者: 廖盛如
Liao, Sheng-Ju
關鍵字: 6061 aluminum alloy
vacuum brazing
mechanical properties
出版社: 機械工程學系所
引用: 1. F. Gao, H. Zhao, D.P. Sekulic, Y. Qian and L. Walker, “Solid state Si diffusion and joint formation involving aluminum brazing sheet”, Materials Science and Engineering-A, Vol. 337, pp. 228-235, 2002. 2. M. Kobashi, T. Ninomiya, N. Kanetake and T. Choh, “Effect of alloying elements in the brazing sheet on the bonding strength between and aluminum”, Scripta Materialia, Vol. 34, No. 3, pp. 415-420, 1996. 3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebroodand P. De smet, “Recent development in aluminium alloys for the automotive industry”, Materials Science and Engineering-A, Vol. 280, pp. 37-49, 2000. 4. B.N. Perevezentsev, G.A. Telitsina and N.M. Sokolova, “Activation of the surface when vacuum brazing aluminum”, Welding International, Vol. 10, No. 8, pp. 649-650, 1996. 5. P. Liu, Y.J. Li, J. Wang and J.S. Guo, “Vacuum brazing technology and microstructure near the interface of Al/18-8 stainless steel”, Materials Research Bulletin, Vol. 38,pp. 1493-1499, 2003. 6. E.B. Ratts, Y.L. Murphey and Y.N. Zhou, “Thermal modeling of controlled atmosphere brazing process using virtual reality technology”, Applied Thermal Engineering, Vol. 20, pp. 1667-1678, 2000. 7. J.S. Ryu, M.S. Kim and D.S. Jung, “Brazeability of cold rolled three layer Al-7.5Si/Al-1.2Mn-2Zn-(0.04-1.0)Si/Al-7.5Si(wt.%) clad sheets”, Journal of Materials Processing Technology, Vol. 130-131, pp. 240-244, 2002. 8. D.P. Sekulic, P.K. Galenko, M.D. Krivilyov, L. Walker and F. Gao, “Dendritic growth in Al-Si alloys during brazing. Part 1: Experimental evidence and kinetic”, International Journal of Heat and Mass Transfer, Vol. 48, pp. 2372-2384, 2005. 9. D.P. Sekulic, P.K. Galenko, M.D. Krivilyov, L. Walker and F. Gao, “Dendritic growth in Al-Si alloys during brazing. Part 2: Computational modeling”, Interational Journal of Heat and Mass Transfer, Vol 48, pp. 2385-2396, 2005. 10. D.P. Sekulic, “Molten aluminum equilibrium membrane formed during controlled atmosphere brazing”, International Journal of Engineering Science, Vol. 39, pp. 229-241, 2001. 11. R.S. Timsit, “Cost-effective brazing technique for aluminum parts eliminates the use of alloy cladding”, Technological Advances, Mat. Tech., pp. 240-242, 1994. 12. S.H. Wang, H.P. Zhou and Y.P. Kang, “The influence of rare earth elements on microstructures and properties of 6061 aluminum alloy vacuum-brazed joints”, Journal of Alloys and Compounds, Vol. 352, pp. 79-83, 2003. 13. S.S. Wang, M.D. Cheng, L.C. Tsao and T.H. Chuang, “Corrosion behavior of Al-Si-Cu-(Sn, Zn) brazing filler metals”, Materials Characterization, Vol. 47, pp. 401-409, 2001. 14. Q.Y. Zhang, “Reduction of metal ions on aluminium in molten flux during aluminium brazing”, China Welding, Vol. 3, No. 1, pp. 10-14, 1994. 15. X.P. Zhang and Y.W. Shi, “A dissolution model of base metal in liquid brazing filler metal during high temperature brazing”, Scripta Materialia, Vol. 50, pp. 1003-1006, 2004. 16. 姜至華, “鋁合金電弧銲接及硬軟銲應用技術”, 財團法人徐氏基金會, 中華民國八十四年五月三十日初版一刷. 17. “Test pieces for tensile test for metallic materials”, Chiness National Standards, CNS 2112-G2014, 1974. 18. “Standard Test Methods for Microetching Metals and Alloys”, American Society for Testing and Materials, ASTM E407, 1989. 19. “Method of tensile test for metallic materials”, Chiness National Standards, CNS 2111-G2013, 1974. 20. 余煥騰, 陳適範, 唐自標, “金屬熱處理學(下冊)”, 六合出版社, 中華民國八十八年一月一版. 21. 张启运, 庄鸿寿, “钎焊手册” 北京, 机械工业出版社, 1998.
摘要: 本論文主要探究不同之製程參數對鋁合金6061真空硬銲接合面之機械性能與氣密性之影響。此研究中硬銲之過程採階段升溫,所考慮之變數有中間階段溫度(580℃)下之持溫時間(t580℃=80~130 min)、升溫速率(Rb=1~5℃/min)、銲接溫度(Tb=590~610℃)及銲接溫度下之持溫時間(tb=2~8 min)等四種,所製作之試片乃分別進行拉力、剪力與氣密性之測試,同時試片之銲道處亦經金相觀察。拉力測試之結果發現,升溫速率與銲接溫度對拉伸應力之影響較小,而中間階段溫度(580℃)與銲接溫度(600℃)下之持溫時間兩者對接合面拉伸與剪切應力之影響最大,在製程參數為t580℃=80 min、Rb=1℃/min、Tb=600℃、tb=5 min時,測試之結果顯示,拉伸與剪切應力分別可達到294.7 與112.5 。氣密測試之結果顯示,當銲道厚度小於1 mm後,試棒漏氣之機率即會大幅增加。銲道金相觀察則顯示,銲道中會出現大小不一之空孔,當銲道中大空孔之數量較多時,其相對之拉伸強度反而會較高。
This work deals with the effect of processing parameters on the mechanical properties and leakage at the interface for vacuum brazing of 6061 aluminum alloy. A step-temperature heating process with an intermediate temperature of 580℃ was adopted. Various holding periods at the intermediate step temperature (t580℃=30~130 min), rates of temperature rise (Rb =1~5℃/min), brazing temperatures (Tb =590~610℃) and holding periods at brazing temperature (tb =2~8 min) were considered. The tests of tensile stress, shear stress and leakage for the brazed samples were individually performed. The brazing interfaces were observed using a microscope. The result of the tensile test shows that the effects of Tb and Rb on the tensile stress are insignificant. The t580℃ and tb appears to significantly affect the tensile and shear stresses. For t580℃=80 min, Rb =1℃/min, Tb =600℃ and tb =5 min, the tensile and shear stresses individually reach 294.7 and 112.5 . As the thickness of the brazing sample less than 1 mm, the probability to have a leaking interface will largely increase. The microscopy of the brazing interface indicates that various sizes of cavities appear on the interface. The actual brazed area on the interface for samples with larger cavities would be more than those with smaller cavities. This makes the former possess a larger tensile stress.
其他識別: U0005-2108200720202400
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.