Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1883
標題: Minimum LP-Norm 相位展開之探討與改善
The study for Minimum LP-Norm on Unwrapping Phase
作者: 蘇禹龍
Su, Yu-Long
關鍵字: 電子斑點干涉術
ESPI
最小P次方法
Minimum LP-Norm
出版社: 機械工程學系所
引用: [1] R.Jones and C.Wykes, “Holographic and Speckle Interferometry,” Cambridge, UK,(1983) [2] A.J.Moore and J.R.Tyrer, “Phase-stepped ESPI and moiré interferometry for measuring the stress-intensity factor and Jintergral,”Exp. Mech., Vol.35, pp.306-314,(1995) [3] H. H. Hopkins and H. J. Tiziani , “Speckling in diffraction patterns and optical images formed with the laser, ”Proc. Int Symp. Hologr. Besancon,(1970). [4] Dennis C. Ghiglia and Louis A. Romero, “Minimum LP-Norm two-dimensional phase unwrapping, ” J. Opt. Soc. Am. A13(1996). [5] Y. M. He, C. J. Tay and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns,” Optics and Lasers Technology, 30, 27-31 (1998). [6] P. Hariharan, B. F. Oreb, and T. Eijux, “Digital phase-shift interferometry:a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504 (1987). [7] R. Cusack, J. M. Huntley and H. T. Goldgrein, “Improved noise immune phase unwrapping algorithm,” Appl. Opt., 34, 781-789 (1995) [8] D.C. Ghiglia, M.D. Pritt, “Two-dimensional Phase Unwrapping Theory,” Algorithm and Software, Wiley, New York (1995) [9] J. M. Huntley and H. Huntley, “Temporal phase-unwrapping algorithm for automated interferometry analysis,” Appl. Opt. 32(17), 3047-3052 (1993). [10] H. O. Salder and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36(13), 2770-2775 (1997). [11] W. W. Macy, “Two-dimensional fringe-pattern analysis,” Appl. Opt. 22, 3898-3901 (1983). [12] R. M. Goldstein, H. A. Zebker and C. L. Werner, “Satellite radar interferometry : Two-dimensional phase unwrapping,” Radio Science 23(4), 713-720 (1988). [13] N. H. Ching, D. Rosenfeld and M. Braun, “Two-dimensional phase unwrapping using a minimum spanning tree algorithm,” IEEE 1(3), 355-361 (1992). [14] T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A 14(10), 2692-2701(1997). [15] A. Spik and D. W. Robinson, “Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor,” Optics and Lasers in Engineering, 14, 25-37(1991). [16] H. Y. Chang, C. W. Chen, C. K. Lee and C. P. Hu, “The tapestry cellular automata phase unwrapping algorithm for interferogram analysis,” Optics and Lasers in Engineering, 30, 487-502(1998). [17] G. B. Arfken and H. J. Weber, “Mathematical Methods for Physicists,” 4th ed. (Academic, San Diego, 1995), Chap. 17. [18] G. M. Ewing, “Calculus of Variations with Applications,” (Dover, New York, 1985). [19] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing,” 2nd ed. (University of Cambridge Press, Cambridge, 1992), 864. [20] Dennis C. Ghiglia and Louis A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 13 (1996). [21] Jonathan Richard Shewchuk , “An Introduction to the Conjugate Gradient MethodWithout the Agonizing Pain, ”
摘要: 光學量測技術具有非接觸性、高靈敏度、即時量測等優點,如電子斑點干涉術(Electronic Speckle Pattern Interferometry),簡稱ESPI),主要是利用光干涉原理,得到干涉條紋圖,再運用相移技術得到包裹相位圖,進而使用相位展開技術得到原始相位圖,再轉化成我們需要得知的物理量,如位移、變形等等,以方便觀察。 本論文主要是以Minimum LP-Norm作為相位展開技術的主要方法,但由於此方法仍有些許的地方需要改進,因此我們便針對它的缺點一一詳述並尋求改善,以期提升此方法的效率。
The measure of optics has the non-contact, the high sensitivity, immediate measure,and so on the merit. Take Electronic Speckle Pattern Interferometry for example, it uses interference principle to obtains the interference fringe, then uses Phase-shifting method to get wrap phase. In this paper, we use Minimum LP-Norm to unwrap the wrap phase. But in fact, this method has many shortcomings to improve. So in this paper, I will introduce Minimum LP-Norm formula and faults gradually to enhance this method efficency.
URI: http://hdl.handle.net/11455/1883
其他識別: U0005-2208200714492200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208200714492200
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.