Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1930
標題: 高速旗魚之推進策略分析
Propulsion Strategy Analysis of High-Speed Swordfish
作者: 吳汶霖
Wu, Wen-Lin
關鍵字: swordfish
劍旗魚
kidnapped airfoils
circulating horsepower
propulsion system equations
綁架機翼
循環馬力
推進系統公式
出版社: 機械工程學系所
引用: [1].雷森,“恐龍再現”,天下文化出版,1994。 [2].邵廣昭,“魚類的生物多樣性及其保護”,中央研究院動物研究所。 [3].邵廣昭、陳麗淑,“魚類入門”,遠流出版事業股份有限公司,2004。 [4].莊朝根,“科學常識百科:魚類奇觀”,世一書局,1987。 [5].何源興、江偉全、陳文義,“旗魚百科”,水產試驗所東部海洋生物研究中心。 [6].沈世傑、李信徹、邵廣昭、莫顯蕎、陳春暉、陳哲聰,“台灣魚類誌”,國立台灣大學動物學系,1993。 [7].http://tuna-taiwan.myweb.hinet.net/aa115.html [8].http://www.ttcsec.gov.tw/f26/b32.htm [9].http://graytaxidermy.com/ [10].http://www.ncor.ntu.edu.tw/odbs/biology/swordfish/sailfish.htm [11].http://www.ncor.ntu.edu.tw/odbs/biology/swordfish/blackmarlin.htm [12].http://tuna-taiwan.myweb.hinet.net/aa114.html [13].林筱齡,“利用耳石估算台灣海域劍旗魚幼魚的日齡與成長”,國立台灣大學海洋研究所,2003。 [14].http://www.flmnh.ufl.edu/fish/Gallery/Descript/Swordfish/Swordfish.html [15].http://www.ttcsec.gov.tw/f26/b32.htm [16].http://www.ncor.ntu.edu.tw/odbs/biology/swordfish/swordfish.htm [17].http://filaman.ifm-geomar.de/Summary/SpeciesSummary.php?id=226 [18].http://www.travel-web.com.tw/Show/Style1/News/c1_News.asp?SItemId=0271030&ProgramNo=A000001000001&SubjectNo=21874 [19].http://www.hakka.gov.tw/ct.asp?xItem=5589&ctNode=292&mp=291 [20].http://www.libertytimes.com.tw/2003/new/nov/2/life/travel-1.htm [21].John J. Videler, “Fish Swimming”, Chapman & Hall, 1993. [22].陳政宏,“鯉魚如何躍龍門─水中生物的推進法”,科學發展,360期,2002年12月。 [23].陳政宏、李志揚,“淺談流體中生物的推進方法”,SciScape專題文章,2000年12月4日。 [24].Azuma, A., “The Biokinetics of Flying and Swimming”, American Institute of Aeronautics and Astronautics, 2006. [25].國豐文化出版社 軍事研究小組,“海中蛟龍潛水艇”,國豐文化出版社。 [26].楊承桓,“划槳與搖橹之推進力學”,國立中興大學機械工程研究所碩士論文,2005。 [27].http://www.ck101.com/forums/redirect.php?fid=245&tid=776056&goto=nextnewset [28].Munson, B. R., Young, D. F. and Okiishi, T. H., “Fundamentals of Fluid Mechanics”, John Wiley& Sons, 1999. [29].Roberson, J. A. and Crowe, C. T., “Engineering Fluid Mechanics”, Houghton Mifflin Company, 1993. [30].郭俊谷,“對衝式氣壓動力模型飛機之研發”,國立中興大學機械工程研究所碩士論文,2005。 [31].王懷柱,“揭開飛行的奧秘”,全華科技圖書股份有限公司,2000。 [32].Jenkinson, L. R., Simpkin, P. and Rhodes, D., “Civil Jet Aircraft Design”, AIAA, 1999. [33].Biewener, A. A., “Animal Locomotion”, Oxford University Press, 2003. [34].Alexander, R. M., “Principles of Animal Locomotion”, Princeton University Press, 2003. [35].Taggart, R., “Marine Propulsion: Principles and Evolution”, Gulf Publishing Company, Houston, Texas. 1969. [36].Lee, H. J. and Huang, S. C., “On the Derivation Process of Reynolds Transport Equation”, The International Journal of Mechanical Engineering Education, Vol. 21, No. 1, 1993, pp. 49-53. [37].林栩,“U迴模式發射衛星運載火箭之推進優勢分析”,國立中興大學機械工程研究所碩士論文,2006。 [38].Lee, H. J. and Chang, C. L., “Deriving the Generalized Power and Efficiency Equations for Jet Propulsion System”, JSME International Journal, 44, Nov, 2001, pp.658-667. [39].Lee, H. J. and Lee, H. W., “Deriving the Generalized Rocket Kinetic Power Equations and Associated Propulsion Indexes”, JSME International Journal, Vol.42, No.1, 1999, pp.127-136.
摘要: 魚類自5億年前寒武紀出現以來,學界對高速魚的推進策略並未能掌握其精髓。而旗魚經數億年演化出高展弦比,輕、薄、窄、高的新月形尾鰭,將大量的水以較小的速度後推,以獲得優異的推進效率,並配合薄化的流線形超低阻魚身,和一身作為動力源的旗魚肉為推進基礎,最高速度可達驚人的130 km/h,終至取得游速王之頭銜。本文以創新的「綁架機翼」與「循環馬力」概念,來說明高速旗魚如何在韻律式非穏態過程搖擺身尾前進時,魚身與魚尾就如同兩個靈活的可變形機翼,環環相扣以獲得並巧妙地互相利用升力,形成「綁架機翼」現象。進而利用魚身上的壓力側線,靈敏地偵測出每段魚身的最佳攻角,並以數億年演化出的「循環馬力」特殊技巧,擷取升力在升力方向之旋轉功率,以補償大部分抵抗前進阻力的功率,因而大幅提升其推進效率,並輕易地超越驚人的500 % 以上,同時也解開了極度困擾學界70多年之Gray悖論的迷惑。縱觀旗魚的推進策略,除了深深感嘆於此一尤物所呈現出力與美的無瑕結合外,在妙手偶得億萬年來無數魚族演化出的生存非常之道之餘,更能感受一絲中國先哲「朝聞道,夕死可以!」的學術快感!
Fish have appeared since Precambrian about 500 million years ago. Nevertheless, related academia still can not grasp the essence of propulsion strategy of high-speed fish. The swordfish evolve many years to end up with a high-aspect-ratio, light, thin, narrow, and high crescent tail fin for pushing a large amount of water backward with a small velocity difference in order to achieve a high propulsion efficiency. With thin, streamlined ultra-low-resistance fish body and sizable muscles as power source basis for propulsion, the swordfish can reach an awesome maximum speed of 130 km/h as the speed king at sea. In this paper, we will explain the innovative concepts of "kidnapped airfoils" and "circulating horsepower" to illustrate how the high-speed swordfish swim forward in an unsteady but rhythmic manner. With body and tail work like two deformable airfoils tightly linked to utilize their lift forces for each other cleverly to form a "kidnapped airfoils" phenomenon. Moreover, they use the sensitive lateral-line sensor to detect the ambient water pressure and attain the best attack angle in order to capture the rotational power of lift in the lift direction by the special long-evolved skills of "circulating horsepower" to compensate most of the resistance power. This skill thus enhances its propulsion efficiency greatly to easily exceed an astonishing 500 % or even more. Meanwhile, it solves the perplexity of Gray paradox lasting for more than 70 years. While taking a panoramic view of the swordfish's propulsion strategy, in addition to sighing deeply for its amazing synergy of force / beauty and our luck of unveiling the survival secret of innumerable long-evolving fish, we can not help but feel a little bit of sensation regarding this academic Eureka!
URI: http://hdl.handle.net/11455/1930
其他識別: U0005-2807200718481100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2807200718481100
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.