請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/19355
標題: 計算系統生物學之整合性生物資訊研究
The integrated bioinformatics study for computational systems biology
作者: 劉俊吉
Liu, Chun-Chi
關鍵字: systems biology
gene network
出版社: 資訊科學系所
引用: References 1. Voit E, Neves AR, Santos H: The intricate side of systems biology. Proc Natl Acad Sci U S A 2006, 103(25):9452-9457. 2. Aderem A: Systems biology: its practice and challenges. Cell 2005, 121(4):511-513. 3. Bruggeman FJ, Westerhoff HV: The nature of systems biology. Trends Microbiol 2007, 15(1):45-50. 4. Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J, Cantor CR, Elston TC, Collins JJ: A bottom-up approach to gene regulation. Nature 2006, 439(7078):856-860. 5. Quackenbush J: Microarray analysis and tumor classification. N Engl J Med 2006, 354(23):2463-2472. 6. Tyers M, Mann M: From genomics to proteomics. Nature 2003, 422(6928):193-197. 7. Baldi PF, Brunak S: Bioinformatics: The machine learning approach. Cambridge, MA: MIT Press; 1998. 8. Chalk AM, Sonnhammer EL: Computational antisense oligo prediction with a neural network model. Bioinformatics 2002, 18(12):1567-1575. 9. Shabalina SA, Spiridonov AN, Ogurtsov AY: Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics 2006, 7:65. 10. Lisboa PJ, Taktak AF: The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 2006, 19(4):408-415. 11. Han L, Cui J, Lin H, Ji Z, Cao Z, Li Y, Chen Y: Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics 2006, 6(14):4023-4037. 12. Wu C, Whitson G, McLarty J, Ermongkonchai A, Chang TC: Protein classification artificial neural system. Protein Sci 1992, 1(5):667-677. 13. Linder R, Dew D, Sudhoff H, Theegarten D, Remberger K, Poppl SJ, Wagner M: The ''subsequent artificial neural network'' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses. Bioinformatics 2004, 20(18):3544-3552. 14. Benitez JM, Castro JL, Requena I: Are artificial neural networks black boxes? Neural Networks, IEEE Transactions on 1997, 8(5):1156-1164. 15. Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC: Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 2005, 23(5):953-964. 16. Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, Wu R, Cheng JL, Roffler SR, Wu CW et al: Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 2001, 61(13):5223-5230. 17. Wang CC, Tsai MF, Hong TM, Chang GC, Chen CY, Yang WM, Chen JJ, Yang PC: The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene 2005, 24(25):4081-4093. 18. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A et al: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002, 1(2):133-143. 19. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M et al: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001, 98(24):13790-13795. 20. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002, 30(1):41-47. 21. Liu CC, Chen WS, Lin CC, Liu HC, Chen HY, Yang PC, Chang PC, Chen JJ: Topology-based cancer classification and related pathway mining using microarray data. Nucleic Acids Res 2006, 34(14):4069-4080. 22. Chen CN, Lin JJ, Chen JJ, Lee PH, Yang CY, Kuo ML, Chang KJ, Hsieh FJ: Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol 2005, 23(29):7286-7295. 23. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG et al: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002, 8(8):816-824. 24. Evertsz EM, Au-Young J, Ruvolo MV, Lim AC, Reynolds MA: Hybridization cross-reactivity within homologous gene families on glass cDNA microarrays. Biotechniques 2001, 31(5):1182, 1184, 1186 passim. 25. Modrek B, Lee C: A genomic view of alternative splicing. Nat Genet 2002, 30(1):13-19. 26. Xu W, Bak S, Decker A, Paquette SM, Feyereisen R, Galbraith DW: Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 2001, 272(1-2):61-74. 27. de la Fuente A, Brazhnik P, Mendes P: Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet 2002, 18(8):395-398. 28. Rung J, Schlitt T, Brazma A, Freivalds K, Vilo J: Building and analysing genome-wide gene disruption networks. Bioinformatics 2002, 18 Suppl 2:S202-210. 29. Kaern M, Blake WJ, Collins JJ: The engineering of gene regulatory networks. Annu Rev Biomed Eng 2003, 5:179-206. 30. di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ: Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 2005, 23(3):377-383. 31. Segal E, Friedman N, Kaminski N, Regev A, Koller D: From signatures to models: understanding cancer using microarrays. Nat Genet 2005, 37 Suppl:S38-45. 32. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK et al: A network-based analysis of systemic inflammation in humans. Nature 2005, 437(7061):1032-1037. 33. Strogatz SH: Exploring complex networks. Nature 2001, 410(6825):268-276. 34. Reka A, Albert-Laszlo B: Statistical mechanics of complex networks. Reviews of Modern Physics 2002, 74(1):47. 35. Vert JP, Kanehisa M: Extracting active pathways from gene expression data. Bioinformatics 2003, 19 Suppl 2:II238-II244. 36. Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C: Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 2004, 22(1):62-69. 37. Carter SL, Brechbuhler CM, Griffin M, Bond AT: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 2004, 20(14):2242-2250. 38. Segal E, Shapira M, Regev A, Pe''er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34(2):166-176. 39. Steuer R, Kurths J, Fiehn O, Weckwerth W: Observing and interpreting correlations in metabolomic networks. Bioinformatics 2003, 19(8):1019-1026. 40. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 2000, 97(22):12182-12186. 41. Segal E, Friedman N, Koller D, Regev A: A module map showing conditional activity of expression modules in cancer. Nat Genet 2004, 36(10):1090-1098. 42. Ramo P, Kesseli J, Yli-Harja O: Stability of functions in Boolean models of gene regulatory networks. Chaos 2005, 15(3):34101. 43. Helman P, Veroff R, Atlas SR, Willman C: A Bayesian network classification methodology for gene expression data. J Comput Biol 2004, 11(4):581-615. 44. Scott MS, Perkins T, Bunnell S, Pepin F, Thomas DY, Hallett M: Identifying regulatory subnetworks for a set of genes. Mol Cell Proteomics 2005, 4(5):683-692. 45. Kelley R, Ideker T: Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 2005, 23(5):561-566. 46. Tamada Y, Kim S, Bannai H, Imoto S, Tashiro K, Kuhara S, Miyano S: Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 2003, 19 Suppl 2:II227-II236. 47. MacCarthy T, Pomiankowski A, Seymour R: Using large-scale perturbations in gene network reconstruction. BMC bioinformatics 2005, 6(1):11. 48. Brazhnik P, de la Fuente A, Mendes P: Gene networks: how to put the function in genomics. Trends Biotechnol 2002, 20(11):467-472. 49. MacCarthy T, Pomiankowski A, Seymour R: Using large-scale perturbations in gene network reconstruction. BMC Bioinformatics 2005, 6:11. 50. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537. 51. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP et al: Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 2001, 98(26):15149-15154. 52. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285(5429):901-906. 53. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG: Genetic analysis of genome-wide variation in human gene expression. Nature 2004, 430(7001):743-747. 54. Yeang CH, Ramaswamy S, Tamayo P, Mukherjee S, Rifkin RM, Angelo M, Reich M, Lander E, Mesirov J, Golub T: Molecular classification of multiple tumor types. Bioinformatics 2001, 17 Suppl 1:S316-322. 55. Li T, Zhang C, Ogihara M: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 2004, 20(15):2429-2437. 56. Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Ramaswamy S, Richards WG, Sugarbaker DJ, Bueno R: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 2002, 62(17):4963-4967. 57. Byvatov E, Schneider G: SVM-based feature selection for characterization of focused compound collections. J Chem Inf Comput Sci 2004, 44(3):993-999. 58. Li J, Liu H, Downing JR, Yeoh AE, Wong L: Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioinformatics 2003, 19(1):71-78. 59. Curtis RK, Oresic M, Vidal-Puig A: Pathways to the analysis of microarray data. Trends Biotechnol 2005, 23(8):429-435. 60. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29. 61. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32(Database issue):D277-280. 62. Rhodes DR, Chinnaiyan AM: Integrative analysis of the cancer transcriptome. Nat Genet 2005, 37 Suppl:S31-37. 63. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ et al: Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 2005, 23(1):137-144. 64. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297. 65. Lin SY, Johnson SM, Abraham M, Vella MC, Pasquinelli A, Gamberi C, Gottlieb E, Slack FJ: The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 2003, 4(5):639-650. 66. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Barrette TR, Ghosh D, Chinnaiyan AM: Mining for regulatory programs in the cancer transcriptome. Nat Genet 2005, 37(6):579-583. 67. Haverty PM, Hansen U, Weng Z: Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification. Nucleic Acids Res 2004, 32(1):179-188. 68. Yap YL, Lam DC, Luc G, Zhang XW, Hernandez D, Gras R, Wang E, Chiu SW, Chung LP, Lam WK et al: Conserved transcription factor binding sites of cancer markers derived from primary lung adenocarcinoma microarrays. Nucleic Acids Res 2005, 33(1):409-421. 69. Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA et al: Database resources of the National Center for Biotechnology. Nucleic Acids Res 2003, 31(1):28-33. 70. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(Database issue):D140-144. 71. Schmid CD, Perier R, Praz V, Bucher P: EPD in its twentieth year: towards complete promoter coverage of selected model organisms. Nucleic Acids Res 2006, 34(Database issue):D82-85. 72. Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E: AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC bioinformatics 2003, 4:25. 73. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV et al: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003, 31(1):374-378. 74. Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T et al: The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 2006, 34(Database issue):D741-744. 75. Pruitt KD, Tatusova T, Maglott DR: NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2005, 33(Database issue):D501-504. 76. O''Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005, 435(7043):839-843. 77. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I: A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005, 123(5):819-831. 78. Chang PC, Peck K: Design and assessment of a fast algorithm for identifying specific probes for human and mouse genes. Bioinformatics 2003, 19(11):1311-1317. 79. Nielsen HB, Knudsen S: Avoiding cross hybridization by choosing nonredundant targets on cDNA arrays. Bioinformatics 2002, 18(2):321-322. 80. Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F: siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 2004, 32(Web Server issue):W130-134. 81. Cuticchia AJ, Arnold J, Timberlake WE: PCAP: probe choice and analysis package--a set of programs to aid in choosing synthetic oligomers for contig mapping. Comput Appl Biosci 1993, 9(2):201-203. 82. Fu YX, Timberlake WE, Arnold J: On the design of genome mapping experiments using short synthetic oligonucleotides. Biometrics 1992, 48(2):337-359. 83. Herwig R, Schmitt AO, Steinfath M, O''Brien J, Seidel H, Meier-Ewert S, Lehrach H, Radelof U: Information theoretical probe selection for hybridisation experiments. Bioinformatics 2000, 16(10):890-898. 84. Li F, Stormo GD: Selection of optimal DNA oligos for gene expression arrays. Bioinformatics 2001, 17(11):1067-1076. 85. Kaderali L, Schliep A: Selecting signature oligonucleotides to identify organisms using DNA arrays. Bioinformatics 2002, 18(10):1340-1349. 86. Rouillard JM, Herbert CJ, Zuker M: OligoArray: genome-scale oligonucleotide design for microarrays. Bioinformatics 2002, 18(3):486-487. 87. Sung WK, Lee WH: Fast and accurate probe selection algorithm for large genomes. Proc IEEE Comput Soc Bioinform Conf 2003, 2:65-74. 88. Hyyro H, Juhola M, Vihinen M: Genome-wide selection of unique and valid oligonucleotides. Nucleic Acids Res 2005, 33(13):e115. 89. Yu JS, Ongarello S, Fiedler R, Chen XW, Toffolo G, Cobelli C, Trajanoski Z: Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 2005, 21(10):2200-2209. 90. Freund JE: Modern elementary statistic: Pearson Education, Inc.; 2004. 91. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A: Rational siRNA design for RNA interference. Nat Biotechnol 2004, 22(3):326-330. 92. Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386. 93. Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J: The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 2001, 29(1):159-164. 94. Lawrence S, Giles CL, Tsoi AC: Lessons in Neural Network Training: overfitting may be harder than expected. In: Proceedings of the Fourteenth National Conference Artificial Intelligence, AAAI-97. AAAI Press; 1997. 95. Liu CC, Lin CC, Chen WS, Chen HY, Chang PC, Chen JJ, Yang PC: CRSD: a comprehensive web server for composite regulatory signature discovery. Nucleic Acids Res 2006, 34(Web Server issue):W571-577. 96. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM et al: Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417(6887):459-463. 97. Little JW, Mount DW: The SOS regulatory system of Escherichia coli. Cell 1982, 29(1):11-22. 98. Rouviere PE, De Las Penas A, Mecsas J, Lu CZ, Rudd KE, Gross CA: rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in Escherichia coli. Embo J 1995, 14(5):1032-1042. 99. Wang X, Seed B: Selection of oligonucleotide probes for protein coding sequences. Bioinformatics 2003, 19(7):796-802. 100. Matveeva OV, Shabalina SA, Nemtsov VA, Tsodikov AD, Gesteland RF, Atkins JF: Thermodynamic calculations and statistical correlations for oligo-probes design. Nucleic Acids Res 2003, 31(14):4211-4217. 101. Bernaola-Galvan P, Roman-Roldan R, Oliver JL: Compositional segmentation and long-range fractal correlations in DNA sequences. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 1996, 53(5):5181-5189. 102. Snove O, Jr., Holen T: Many commonly used siRNAs risk off-target activity. Biochem Biophys Res Commun 2004, 319(1):256-263. 103. Yamada T, Morishita S: Accelerated off-target search algorithm for siRNA. Bioinformatics 2005, 21(8):1316-1324. 104. Huang YC, Chang CF, Chan CH, Yeh TJ, Chang YC, Chen CC, Kao CY: Integrated minimum-set primers and unique probe design algorithms for differential detection on symptom-related pathogens. Bioinformatics 2005, 21(24):4330-4337. 105. Cobo F, Stacey GN, Hunt C, Cabrera C, Nieto A, Montes R, Cortes JL, Catalina P, Barnie A, Concha A: Microbiological control in stem cell banks: approaches to standardisation. Appl Microbiol Biotechnol 2005, 68(4):456-466. 106. Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ: Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 2000, 28(22):4552-4557. 107. Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature 2001, 411(6833):41-42. 108. Barabasi AL: Linked: The New Science of Networks: Perseus Books Group; 2002. 109. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005, 21(5):631-643. 110. Dorogovtsev SN, Mendes JFF: Evolution of networks. Adv Phys 2002, 51:1079-1187. 111. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297(5586):1551-1555. 112. Barabasi AL, Oltvai ZN, Wuchty S: Characteristics of Biological Networks. Lect Notes Phys 2004, 650:443-457. 113. Przulj N, Wigle DA, Jurisica I: Functional topology in a network of protein interactions. Bioinformatics 2004, 20(3):340-348. 114. Milton JS, Arnold JC: Introduction to probability and statistics. New York: McGraw-Hill; 2001. 115. de la Fuente A, Bing N, Hoeschele I, Mendes P: Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 2004, 20(18):3565-3574. 116. Kanehisa M: A database for post-genome analysis. Trends Genet 1997, 13(9):375-376. 117. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30. 118. Crammer K, Singer Y: On the Algorithmic Implementation of Multi-class SVMs: JMLR; 2001. 119. Thomas R: Laws for the dynamics of regulatory networks. Int J Dev Biol 1998, 42(3):479-485. 120. Goutsias J, Kim S: A nonlinear discrete dynamical model for transcriptional regulation: construction and properties. Biophys J 2004, 86(4):1922-1945. 121. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER: A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 2004, 16(11):2923-2939. 122. Han JD, Dupuy D, Bertin N, Cusick ME, Vidal M: Effect of sampling on topology predictions of protein-protein interaction networks. Nat Biotechnol 2005, 23(7):839-844. 123. Lindberg SR, Olsson A, Persson AM, Olsson I: The Leukemia-associated ETO homologues are differently expressed during hematopoietic differentiation. Exp Hematol 2005, 33(2):189-198. 124. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H, Baruchel A, Toribio ML, Sigaux F: HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005, 106(1):274-286. 125. Kode J, Dudhal N, Banavali S, Advani S, Chiplunkar S: Clonal T-cell receptor gamma and delta gene rearrangements in T-cell acute lymphoblastic leukemia at diagnosis: predictor of prognosis and response to chemotherapy. Leuk Lymphoma 2004, 45(1):125-133. 126. Wikman H, Seppanen JK, Sarhadi VK, Kettunen E, Salmenkivi K, Kuosma E, Vainio-Siukola K, Nagy B, Karjalainen A, Sioris T et al: Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue microarrays. J Pathol 2004, 203(1):584-593. 127. Bartling B, Hofmann HS, Weigle B, Silber RE, Simm A: Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis 2005, 26(2):293-301. 128. Isler SG, Ludwig CU, Chiquet-Ehrismann R, Schenk S: Evidence for transcriptional repression of SPARC-like 1, a gene downregulated in human lung tumors. Int J Oncol 2004, 25(4):1073-1079. 129. Smith SL, Watson SG, Ratschiller D, Gugger M, Betticher DC, Heighway J: Maspin - the most commonly-expressed gene of the 18q21.3 serpin cluster in lung cancer - is strongly expressed in preneoplastic bronchial lesions. Oncogene 2003, 22(54):8677-8687. 130. Kettunen E, Anttila S, Seppanen JK, Karjalainen A, Edgren H, Lindstrom I, Salovaara R, Nissen AM, Salo J, Mattson K et al: Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer. Cancer Genet Cytogenet 2004, 149(2):98-106. 131. Rom WN, Tchou-Wong KM: Functional genomics in lung cancer and biomarker detection. Am J Respir Cell Mol Biol 2003, 29(2):153-156. 132. Tsutsumida H, Goto M, Kitajima S, Kubota I, Hirotsu Y, Yonezawa S: Combined status of MUC1 mucin and surfactant apoprotein A expression can predict the outcome of patients with small-size lung adenocarcinoma. Histopathology 2004, 44(2):147-155. 133. Kristiansen G, Sammar M, Altevogt P: Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 2004, 35(3):255-262. 134. Kanomata N, Yokose T, Kamijo T, Yonou H, Hasebe T, Itano N, Kimata K, Ochiai A: Hyaluronan synthase expression in pleural malignant mesotheliomas. Virchows Arch 2005, 446(3):246-250. 135. Sueoka N, Lee HY, Wiehle S, Cristiano RJ, Fang B, Ji L, Roth JA, Hong WK, Cohen P, Kurie JM: Insulin-like growth factor binding protein-6 activates programmed cell death in non-small cell lung cancer cells. Oncogene 2000, 19(38):4432-4436. 136. Beissbarth T, Speed TP: GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 2004, 20(9):1464-1465. 137. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E et al: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34(3):267-273. 138. Damian D, Gorfine M: Statistical concerns about the GSEA procedure. Nat Genet 2004, 36(7):663; author reply 663. 139. Laskin JJ, Sandler AB: The importance of the eicosanoid pathway in lung cancer. Lung Cancer 2003, 41 Suppl 1:S73-79. 140. Kaminski N, Krupsky M: Gene expression patterns, prognostic and diagnostic markers, and lung cancer biology. Chest 2004, 125(5 Suppl):111S-115S. 141. Soung YH, Lee JW, Kim SY, Seo SH, Park WS, Nam SW, Song SY, Han JH, Park CK, Lee JY et al: Mutational analysis of EGFR and K-RAS genes in lung adenocarcinomas. Virchows Arch 2005, 446(5):483-488. 142. Mori S, Ito G, Usami N, Yoshioka H, Ueda Y, Kodama Y, Takahashi M, Fong KM, Shimokata K, Sekido Y: p53 apoptotic pathway molecules are frequently and simultaneously altered in nonsmall cell lung carcinoma. Cancer 2004, 100(8):1673-1682. 143. Wu MF, Wu WJ, Chang GC, Chen CY, Hu SW, Tsai WT, Lee H, Lin P: Increased expression of cytochrome P4501B1 in peripheral leukocytes from lung cancer patients. Toxicol Lett 2004, 150(2):211-219. 144. Ko JL, Cheng YW, Chang SL, Su JM, Chen CY, Lee H: MDM2 mRNA expression is a favorable prognostic factor in non-small-cell lung cancer. Int J Cancer 2000, 89(3):265-270. 145. Mohr S, Keith G, Galateau-Salle F, Icard P, Rihn BH: Cell protection, resistance and invasiveness of two malignant mesotheliomas as assessed by 10K-microarray. Biochim Biophys Acta 2004, 1688(1):43-60. 146. Jaurand MC, Fleury-Feith J: Pathogenesis of malignant pleural mesothelioma. Respirology 2005, 10(1):2-8. 147. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol 2004, 2(11):e363. 148. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20. 149. Lindow M, Krogh A: Computational evidence for hundreds of non-conserved plant microRNAs. BMC Genomics 2005, 6:119. 150. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E et al: Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005, 37(7):766-770. 151. Halees AS, Weng Z: PromoSer: improvements to the algorithm, visualization and accessibility. Nucleic Acids Res 2004, 32(Web Server issue):W191-194. 152. Griffiths-Jones S: The microRNA Registry. Nucleic Acids Res 2004, 32(Database issue):D109-111. 153. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol 2003, 5(1):R1. 154. Wingender E: TRANSFAC, TRANSPATH and CYTOMER as starting points for an ontology of regulatory networks. In Silico Biol 2004, 4(1):55-61. 155. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2):185-193. 156. Davide FA, Di Natale C, D''Amico A: Self-organising sensory maps in odour classification mimicking. Biosens Bioelectron 1995, 10(1-2):203-218. 157. Frith MC, Hansen U, Spouge JL, Weng Z: Finding functional sequence elements by multiple local alignment. Nucleic Acids Res 2004, 32(1):189-200. 158. Pavesi G, Mereghetti P, Mauri G, Pesole G: Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 2004, 32(Web Server issue):W199-203. 159. Gardiner-Garden M, Frommer M: CpG islands in vertebrate genomes. J Mol Biol 1987, 196(2):261-282. 160. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005, 102(39):13944-13949. 161. Li X, Carthew RW: A microRNA Mediates EGF Receptor Signaling and Promotes Photoreceptor Differentiation in the Drosophila Eye. Cell 2005, 123(7):1267-1277. 162. Hoffmann E, Thiefes A, Buhrow D, Dittrich-Breiholz O, Schneider H, Resch K, Kracht M: MEK1-dependent delayed expression of Fos-related antigen-1 counteracts c-Fos and p65 NF-kappaB-mediated interleukin-8 transcription in response to cytokines or growth factors. J Biol Chem 2005, 280(10):9706-9718. 163. Akira S: Toll-like receptor signaling. J Biol Chem 2003, 278(40):38105-38108. 164. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK: Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 2001, 98(5):2604-2609. 165. Coles LS, Diamond P, Lambrusco L, Hunter J, Burrows J, Vadas MA, Goodall GJ: A novel mechanism of repression of the vascular endothelial growth factor promoter, by single strand DNA binding cold shock domain (Y-box) proteins in normoxic fibroblasts. Nucleic Acids Res 2002, 30(22):4845-4854. 166. Srivastava K, Teper AA, Zhang TF, Li S, Walsh MJ, Huang CK, Kattan M, Schofield BH, Sampson HA, Li XM: Immunomodulatory effect of the antiasthma Chinese herbal formula MSSM-002 on TH2 cells. J Allergy Clin Immunol 2004, 113(2):268-276. 167. Tykocinski LO, Hajkova P, Chang HD, Stamm T, Sozeri O, Lohning M, Hu-Li J, Niesner U, Kreher S, Friedrich B et al: A critical control element for interleukin-4 memory expression in T helper lymphocytes. J Biol Chem 2005, 280(31):28177-28185. 168. Bergman MR, Cheng S, Honbo N, Piacentini L, Karliner JS, Lovett DH: A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers. Biochem J 2003, 369(Pt 3):485-496. 169. Dalton S: Cell cycle regulation of the human cdc2 gene. Embo J 1992, 11(5):1797-1804. 170. Moriuchi M, Moriuchi H, Fauci AS: GATA-1 transcription factor transactivates the promoter for CCR5, a coreceptor for human immunodeficiency virus type 1 entry. Blood 1999, 93(4):1433-1435. 171. Bastian LS, Kwiatkowski BA, Breininger J, Danner S, Roth G: Regulation of the megakaryocytic glycoprotein IX promoter by the oncogenic Ets transcription factor Fli-1. Blood 1999, 93(8):2637-2644. 172. Vasicek R, Meinhardt G, Haidweger E, Rotheneder H, Husslein P, Knofler M: Expression of the human Hand1 gene in trophoblastic cells is transcriptionally regulated by activating and repressing specificity protein (Sp)-elements. Gene 2003, 302(1-2):115-127. 173. Fan W, Jin S, Tong T, Zhao H, Fan F, Antinore MJ, Rajasekaran B, Wu M, Zhan Q: BRCA1 regulates GADD45 through its interactions with the OCT-1 and CAAT motifs. J Biol Chem 2002, 277(10):8061-8067. 174. Willis D, Zhang Y, Molloy GR: Transcription of brain creatine kinase in U87-MG glioblastoma is modulated by factor AP2. Biochim Biophys Acta 2005, 1728(1-2):18-33. 175. Fogel GB, Weekes DG, Varga G, Dow ER, Craven AM, Harlow HB, Su EW, Onyia JE, Su C: A statistical analysis of the TRANSFAC database. Biosystems 2005, 81(2):137-154. 176. Gaubatz S, Meichle A, Eilers M: An E-box element localized in the first intron mediates regulation of the prothymosin alpha gene by c-myc. Mol Cell Biol 1994, 14(6):3853-3862. 177. Beohar N, Kawamoto S: Transcriptional regulation of the human nonmuscle myosin II heavy chain-A gene. Identification of three clustered cis-elements in intron-1 which modulate transcription in a cell type- and differentiation state-dependent manner. J Biol Chem 1998, 273(15):9168-9178. 178. Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 2004, 14(6):787-799. 179. Mallory AC, Vaucheret H: Functions of microRNAs and related small RNAs in plants. Nat Genet 2006, 38 Suppl:S31-36. 180. Sunkar R, Zhu JK: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 2004, 16(8):2001-2019. 181. Wang XJ, Reyes JL, Chua NH, Gaasterland T: Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 2004, 5(9):R65. 182. Wang X, Wang X: Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006, 34(5):1646-1652. 183. Krutzfeldt J, Poy MN, Stoffel M: Strategies to determine the biological function of microRNAs. Nat Ge
摘要: 系統生物學(systems biology)是一門整合多方面生物系統的學科,涵蓋基因體(genomics)、基因轉錄體(transcriptomics)、蛋白質體(proteomics)、基因調控網路(gene regulatory networks)、生物途徑(pathways)等生物系統,並且以生物資訊(bioinformatics)為整合工具,進行系統性的研究,包含了資料分析與生物模型的建立。本論文探討了專一性寡核苷酸序列分析、基因微陣列(microarray)探針設計、基因微陣列資料分析、啟動子分析(promoter analysis)、基因體分析(genome context analysis)、轉錄因子(transcription factor)調控預測、微核醣核酸(microRNA)調控預測、生物途徑分析、基因調控網路之建構、以及複雜的轉錄因子與微核醣核酸的調控預測。整體架構分為三個部份:專一性寡核苷酸序列預測、發展基因微陣列資料的分析方法、以及整合廣泛多元的生物資料庫。 第一部分是研究基因組規模的專一性寡核苷酸序列預測,用於基因微陣列探針設計、引子設計(primer design)及siRNA設計。類神經網路(Artificial neural network)是一個重要的機器學習技術,可處理高度雜訊且複雜的龐大資料,本論文運用類神經網路技術將10-mer ~ 26-mer的專一性子序列(unique subsequence)密度作了最佳化的整合。因此我們提出一個創新的演算法,整合了類神經網路與BLAST (稱為IAB algorithm),用於預測專一性寡核苷酸序列。在執行的效能上,相較於用純粹的BLAST有5-7倍的速度提升。 第二部分是研究基因微陣列資料分析,其用於癌症分類(cancer classification)與生物途徑分析。結合生物晶片的癌症分類與生物途徑分析是目前功能基因體醫學中的前瞻趨勢,然而藉由基因網路連接分子分類技術與生物途徑分析的研究未見文獻報導。由於某一類別的基因網路在該類別內具有保守的拓撲性質,因此我們運用此性質來發展基因網路拓撲的相關技術。研究結果發現基因網路蘊含了癌症分類與生物途徑分析所需資訊,因此我們發展了一個「以基因網路為基礎的癌症分類技術與生物途徑分析技術」。其中也衍生出一個創新的基因網路建構技術,稱為次序結構網路。我們分別就癌症分類的精確性與穩定性、線性關係的侷限性、羃次律法則(power-law)的性質、網路建構的時間複雜度及文獻研究的探討,闡明了以次序結構為基礎的基因網路建構技術是一個優越的技術。 第三部分是整合廣泛多元的生物資料庫以及研究轉錄因子與微核醣核酸的複雜調控機制。在基因表達調節上,轉錄因子與微核醣核酸扮演著重要的角色,而同時結合此二者的觀念以研究基因表現的複雜調節機制是一個嶄新的研究領域。在研究中,我們建構一個廣泛型生物資訊網站 (CRSD),有效整合了單一基因(UniGene)、微核醣核酸、啟動子、轉錄因子、生物途徑、基因功能分類及基因體等資料庫。為了提供廣泛的基因微陣列資料分析,我們發展了創新的整合性分析架構,CRSD包含了微陣列生物晶片資料預先處理、統計分析、分群分析、生物意義增強分析(enrichment analysis)及功能序列(Motif)偵測。再者我們延伸並增強了CRSD的功能與架構,建立了一個植物的廣泛型生物資訊網站 (PlantCRSD),其包含了植物微核醣核酸的廣泛性註解,涵蓋了阿拉伯芥(Arabidopsis thaliana) 和水稻(Oryza sativa)兩物種。 本論文具備系統生物學的整合性架構,涵蓋了多個層面的生物資訊技術。基因微陣列探針設計,可以輔助生物實驗以取得大量資料。以基因網路拓撲為基礎的癌症分類與生物途徑分析技術,賦予基因網路新的應用,同時也提供了一個評估基因網路精確度的可能方法。這開創了一個嶄新的思維方向,有效的從人造基因網路中萃取出重要的資訊。生物系統具有高度複雜與多元性,廣泛多元的生物資料庫、序列分析與基因微陣列資料分析之整合是必然的趨勢。因此我們建立了廣泛型生物資訊網站,其為一個整合性系統生物學的研究發展平台,其具備了基因組規模的生物現象預測及友善的使用者介面,對於國際性的學術交流、知識庫的建立與相互驗證將提供具體的助益。
Systems biology is the study integrated various biological systems such as genomics, transcriptomics, proteomics, gene regulatory networks, and pathways, in which bioinformatics is an integrating tool to perform the systematic data analysis and the construction of biological models. This study contains specific oligonucleotide (oligo) identification, microarray probe design, microarray data analysis, promoter analysis, genome context analysis, transcription factor (TF) regulation prediction, microRNA (miRNA) regulation prediction, pathway analysis, gene network construction, complex regulation prediction of miRNAs and TFs, and so on. In this dissertation, the architecture consists of three major components as follows: (i) identification of specific oligos; (ii) development of the method in microarray data analysis; and (iii) integration of comprehensive biological databases. The first component is genome-wide identification of the specific oligos, which can be employed in microarray probe design, primer design, and siRNA design. An artificial neural network (ANN) is a popular learning approach that effectively handles noise and complex relationships in a robust way. In this dissertation, the ANN has been utilized to integrate the 10-mer ~ 26-mer densities of unique subsequence. We presented a novel and efficient algorithm that integrates the ANN and BLAST, named IAB algorithm, to identify the specific oligos. The performance of the IAB algorithm was about 5-7 times faster than the BLAST search without ANN in the experimental results. The second component is the development of the novel method in microarray data analysis, which can be employed in cancer classification and pathway analysis. Cancer classification and pathway analysis are promising methods to discover the underlying molecular mechanisms by using microarray data. However, linking molecular classification and pathway analysis by gene network approach has not been discussed yet. After continuous investigation, we discovered that the inside of the gene networks have information for cancer classification and pathway analysis. In this dissertation, we developed a novel framework that can construct the class-specific gene networks for classification and pathway analysis, which includes a novel network construction, named ordering networks. Thus, the topology-based classification and pathway analysis have been developed in this dissertation. The accuracy and stability of classification performance, the limitation of linear relationship, the power-law property, the time complexity of network construction, and literature studies have been investigated. Our results suggest that the ordering network construction has outstanding performances. The integration of comprehensive biological databases and the study of complex regulation of TFs and miRNAs are the third component. TFs and miRNAs play important roles in regulation of gene expression and the study on their combinatory regulations of gene expression is a new research field. In this dissertation, we constructed a comprehensive web server, named composite regulatory signature database (CRSD), that integrates UniGene, miRBase, promoter, TRANSFAC, pathway, gene ontology, and genome databases. To accomplish the data analysis of microarray at one go, several methods including the microarray data pretreatment, statistic and clustering analysis, iterative enrichment analysis, and motif discovery were closely integrated in the web server. We further extended and enhanced the framework of CRSD to develop the plant composite regulatory signature database (PlantCRSD), which includes comprehensive annotations of plant miRNAs for Arabidopsis thaliana and Oryza sativa. This study is a framework to provide integrated and comprehensive knowledge for computational systems biology, which contains multiple levels and various fields in bioinformatics. The novel method of microarray probe design can help biological experiments to obtain the microarray data. The topology-based cancer classification and pathway analysis contribute a new way to the application of gene networks, and they may provide a criterion to evaluate the accuracy of gene networks. Our comprehensive web server is an integrative platform for systems biology study. This server has the predictions of genome-wide biological behaviors and the user-friendly interface, which may constribute to worldwide academic interconnection, knowledge base establishment, and mutual validation.
URI: http://hdl.handle.net/11455/19355
其他識別: U0005-2001200703323100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2001200703323100

TAIR 相關文章

在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。