Please use this identifier to cite or link to this item:
標題: 利用三角切割法的質心延伸分佈表示法之影像擷取
Image Retrieval based on Object''s Centroid-Extended Spanning Representation using Triangular Partition Approach
作者: 蘇衍維
Su, Yen-Wei
關鍵字: 空間關係
image retrieval
spatial relationships
spatial reasoning
similarity measures
similarity retrieval
出版社: 資訊科學系所
引用: [1]B. Bhanu and S. Lee, Genetic Learning for Adaptive Image Segmentation. Norwell: Kluwer Academic, 1994. [2]Y. Chen and J.Z. Wang, A region-based fuzzy feature matching approach to content-based image retrieval, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no.9, pp. 1252-1267, Sept. 2002. [3]P.W. Huang and S.K. Dai, Image retrieval by texture similarity, Pattern Recognition, vol. 36, pp. 665-679, 2003. [4]A.K. Majumdar, I. Bhattacharya, and A.K. Saha, An Object-Oriented Fuzzy Data Model for Similarity Detection in Image Databases, IEEE Trans. Knowledge and Data Eng., vol. 14, no. 5,pp. 1186-1189, Sept./Oct. 2002. [5]E. Petrakis, C. Faloutsos, and K.I. Lin, ImageMap: An Image Indexing Method Based on Spatial Similarity, IEEE Trans.Knowledge and Data Eng., vol. 14, no. 5, pp. 979-987, Sept./Oct.2002. [6]Y. Rui, T.S. Huang, Image Retrieval: Current Techniques, Promising Directions, and Open Issues, J. Visual Comm. Image Representation, vol. 10, pp. 39-62, 1999. [7]M. Flickner, H. Aawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Streele, and P. Yanker, Query by image and video content: The QBIC system, Computer, vol. 28, no. 9, pp. 23-32, Sept. 1995. [8]J.R. Smith and S.F. Chang, VisualSEEK: A full automated content-based image query system, Proc. Fourth ACM Int'l Multimedia Conf., pp.87-98, 1996. [9]K.C. Liang and C.C. Jay Kuo, WaveGuide: A joint wavelet-based image representation and description system, IEEE Trans. Image Processing, vol. 8, no. 11, pp.1619-1629, 1999. [10]RetrievalWare, 2004. [11]Po-Whei Huang and Chu-Hui Lee, Image database design based on 9D-SPA representation for spatial relations, IEEE Transactions on knowledge and data engineering, Vol. 16, No. 11, November 2004. [12]Max J. Egenhofer, Query processing in spatial-query-by-sketch, Journal of visual languages and computing, Vol.8, pp.403-424, 1997. [13]P. W. Huang and Y. R. Jean, Using 2D C+-string as spatial knowledge representation for image database systems, Pattern recognition, Vol.27, No.9, pp.1249-1257, 1994. [14]Christophe Claramunt and Marius Theriault, Fuzzy semantics for direction relations between composite regions, Information sciences, Vol.160, 73-90, 2004. [15]S.K. Chang, Q.Y. Shi, and C.W. Yan, Iconic indexing by 2D strings, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 9, no. 3, pp. 413-428, May 1987. [16]S.K. Chang, E. Jungert, and Y. Li, Representation and retrieval of symbolic pictures using generalized 2D strings, technical report, University of Pittsburg, 1988. [17]S.Y. Lee and F.J. Hsu, 2D C-string: A new spatial knowledge representation for image database systems, Pattern Recognition, vol. 23, no. 10, pp. 1077-1087, Oct. 1990. [18]Anthony J.T. Lee and Han-Pang Chiu, 2D Z-string: A new spatial knowledge representation for image databases, Pattern Recognition Letters, vol. 24, pp.3015-3026, 2003. [19]X.M. Zhou and C.H. Ang, Retrieving Similar Pictures from a Pictorial Database by an Improved Hashing Table, Pattern Recognition Letters, vol. 18, pp. 751-758, 1997. [20]R. Goyal, M.J. Egenhofer, Cardinal directions between extended spatial objects, IEEE Transactions on Knowledge and Data Engineering, 2000. Available at [21]Yong-Shan Liu and Zhong-Xiao Hao, A method for composing cardinal direction relations, Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, pp.18-21, August 2005. [22]Spiros Skiadopoulos, Christos Giannoukos, Nikos Sarkas, Panos Vassiliadis, Timos Sellis, and Manolis Koubarakis, Computing and managing cardinal direction relations, IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 12, December 2005. [23]Suh-Yin Lee and Fang-Jung Hsu, Spatial reasoning and similarity retrieval of images using 2D C-string knowledge representation, Pattern recognition, Vol.25, No.3, pp.305-318, 1992. [24]Donna Jean Peuquet and Zhan Ci-Xiang, An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane, Pattern recognition, Vol. 20, No.1, pp. 65-74, 1987.
摘要: 相對於文字或數字為基礎的影像擷取而言,以內容為基礎的影像擷取(CBIR)為現今設計影像資料庫系統的主要趨勢。在設計CBIR的系統時,物件彼此之間的空間關係為重要的特徵,在這篇論文中,我們提出一個利用三角形切割法的質心延伸分佈表示法來表示影像內之物件,以及物件與物件之空間關係,並用此表示法來做空間推論以及相似影像擷取的功能。此表示法提供了十二種的相似度衡量類型以符合使用者不同之需求,經實驗證明用此表示法所建立的資料庫,有高效能的準確率及涵蓋度。
Content-based image retrieval (CBIR) is the current trend of designing image database systems as opposed to text-based image retrieval. Spatial relationships between objects are important features for designing a content-based image retrieval system. In this paper, we propose a new spatial representation based on centroid-extended spanning concept using a triangular partition approach. Such a representation can facilitate spatial reasoning and similarity retrieval. This representation provides twelve types of similarity measures to meet user's different requirements. Experimental results demonstrate that image database systems based on the representation method proposed in this thesis have high performance in terms of recall and precision.
其他識別: U0005-2708200613291300
Appears in Collections:資訊科學與工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.