Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/19506
標題: 無線感知網路上省能源之金鑰管理與資料加總機制
Power-Efficient Schemes for Key Management and Data Aggregation in Wireless Sensor Networks
作者: 王乾隆
Wang, Chien-Lung
關鍵字: rekeying
金鑰更新
security
concealed data aggregation
power-saving
wireless sensor networks
安全
隱藏資料加總
省能
無線感知網路
出版社: 資訊科學與工程學系所
引用: [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Networks”, IEEE Communications Magazine, Vol.40, pp.102-114, 2002. [2] F. Armknecht, D. Westhoff, A. Hessler, and J. Girao, “A lifetime-optimized end-to-end encryption scheme for sensor networks allowing in-network processing”, Computer Communications, Vol.31, pp.734-749, 2008. [3] R. Blom, “An Optimal Class of Symmetric Key Generation Systems,” Advances in Cryptology: Proceedings of EUROCRYPT, pp. 335-33, 1984. [4] A. Boulis, S. Ganeriwal, and M.B. Srivastava, “Aggregation in Sensor Networks: An Energy-Accuracy Trade-Off”, Elsevier Journal of Ad Hoc Networks, Vol.1, Issues 2-3, pp.317-331, 2003. [5] S. Camtepe and B. Yener, “Key Distribution Mechanisms for Wireless Sensor Networks: A Survey,” Rensselaer Polytechnic Institute, Troy, New York, Technical Report 05-07, 2005. [6] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient Aggregation of Encrypted Data in Wireless Sensor Networks”, The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp.109-117, 2005. [7] H. Chan, A. Perrig, D. Song, “Random Key Pre-distribution Schemes for Sensor Networks,” IEEE Symposium on Security and Privacy, Berkeley, California, pp.197-213, 2003. [8] H. Chan, A. Perrig, D. Song, “Secure Hierarchical in-Network Aggregation in Sensor Networks”, ACM conference on Computer and Communications Security, pp.278-287, 2006. [9] H.Y. Chu, K. H. Tsai and W. J. Chang, “Fuzzy Control of Active Queue Management Routers for Transmission Control Protocol Networks via Time-delay Affine Takagi-Sugeno Fuzzy Models”, International Journal of Innovative Computing, Information and Control, Vol.4, no.2, pp.291-312, 2008. [10] Crossbow Technology Inc., “Motes: Smart Dust Sensors, Wireless Sensor Networks”, Webpage. Online. Available: http://www.xbow.com. [11] J. Domingo-Ferrer, “A Provably Secure Additive and Multiplication Privacy Homomorphism”, Information Security Conference, LNCS 2433, pp.471-483, 2002. [12] W. Du, J. Deng, Y. S. Han and P. K. Varshney, “A Key Predistribution Scheme for Sensor Networks Using Deployment Knowledge,” IEEE Transactions on Dependable and Secure Computing, 2006. [13] L. Eschenauer and V.D. Gligor, “A Key-Management Scheme for Distribution Sensor Networks,” ACM Computer and Comm. Security, pp. 41-47, 2002. [14] J. Girao, D. Westhoff and M. Schneider, “CDA: Concealed Data Aggregation for Wireless Sensor Networks”, ACM Workshop on Wireless Security, 2004. [15] J. Girao, D. Westhoff and M. Schneider, “CDA: Concealed Data Aggregation for Wireless Sensor Networks”, IEEE International Conference on Communications, pp.3044-3049, 2005. [16] David E. Goldberg, “Genetic Algorithms in Search,” Optimization, and Machine Learning, 1989. [17] S. Hahm, Y. Jung, S. Yi, Y. Song, I. Chong, and K. Lim, “A Self-organized Authentication Architecture in Mobile Ad-hoc Networks,” International Conference on Information Networking, pp.96-104, 2005. [18] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive Secret Sharing Or: How to Cope With Perpetual Leakage”, Advances in Cryptology, LNCS, Springer, Vol.963, pp.339-352, 1995. [19] F. Herrera, M. Lozano and J. L. Verdegay, “Fuzzy connectives based crossover operators to model genetic algorithms population diversity,” Fuzzy Sets and Systems, Vol. 92, No. 1, pp. 21-30, 1997. [20] Gwoboa Horng, Chien-Lung Wang and Tzung-Her Chen, "An Efficient Concealed Data Aggregation Scheme for Sensor Networks Based on Secret Sharing", will appear in International Journal of Innovative Computing Information and Control, 2009. [21] L. Hu and D. Evans, “Secure Aggregation for Wireless Networks”, Symposium on Applications and the Internet Workshops, pp.384-391, 2003. [22] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact of Network Density on Data Aggregation in Wireless Sensor Networks”, International Conference on Distributed Computing Systems, pp.457-458, 2002. [23] M. Ito and M. Tanaka, “Localization of a Moving Sensor by Particle Filters”, International Journal of Innovative Computing, Information and Control, Vol.4, no.1, pp.165-174, 2008. [24] P. Jadia, A. Mathuria, “Efficient Secure Aggregation in Sensor Networks”, Proc. High Performance Computing, LNCS 3296, pp.40-49, 2004. [25] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review., Vol. 106, pp. 361-373, 1957. [26] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security Architecture for Wireless Sensor Networks”, Embedded Networked Sensor Systems, pp.162-175, 2004. [27] J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla and S. Lu, “Adaptive Security for Multilevel Ad Hoc Network,” Wireless Communication and Mobile Computing, 2002. [28] G. Y. Lee; Y. Lee, “Efficient Rekey Interval for Minimum Cost on Secure Multicast System Using Group Key,” IEEE Global Communications Conference, Taipei, Taiwan, Vol. 2, pp.1995-1999, 2002. [29] H. Luo, P. Zerfos, J. Kong, S. Lu, and L. Zhang, “Self-Securing Ad Hoc Wireless Networks,” IEEE Symposium on Computers and Communications, 2002. [30] A. Mahimkar, T.S. Rappaport, “SecureDAV: A Secure Data Aggregation and Verification Protocol for Sensor Networks”, IEEE Global Telecommunications Conference, Vol.4 pp.2175-2179, 2004. [31] Z. Mao and B. Jiang, “Fault identification and fault-tolerant control for a class of networked control systems”, International Journal Innovative Computing, Information and Control, Vol.3, no.5, pp.1121-1130, 2007. [32] M. A. Moharrum, M. Eltoweissy, “A Study of Static Versus Dynamic Keying Schemes in Sensor Networks," ACM Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, 2005. [33] T. Park, and K. G. Shin, “LiSP: A Lightweight Security Protocol for Wireless Sensor Networks”, ACM Transactions on Embedded Computing Systems, Vol.3, pp.634-660, 2004. [34] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, “SPINS: Security Protocols for Sensor Networks,” ACM Annual International Conference on Mobile Computing and Networking, pp.189-199, 2001. [35] S. Peter, K. Piotrowski, and P. Langendoerfer, “On Concealed Data Aggregation for Wireless Sensor Networks”, IEEE Consumer Communications and Networking Conference, pp.192-196, 2007. [36] K. Piotrowski, P. Langendoerfer and S. Peter, “How Public Key Cryptography Influences Wireless Sensor Node Lifetime”, ACM Workshop on Security of Ad Hoc and Sensor Networks, pp.169-176, 2006. [37] A. Price, K. Kosaka, and S. Chatterjee, “A Key Pre-distribution Scheme for Wireless Sensor Networks,” Wireless Telecommunications Symposium, pp. 253-260, 2005. [38] B. Przydatek, D. Song and A. Perrig, “SIA: Secure Data Aggregation in Sensor Networks”, First ACM Workshop Sensor Systems, 2003. [39] M. Ramkumar, N. Memon, R. Simha, “Pre-Loaded Key Based Multicast and Broadcast Authentication in Mobile Ad-Hoc Networks,” IEEE Globe Telecommunication Conference, San Fransisco, CA, 2003. [40] M. Ramkumar, N. Memon, “On the Security of Random Key Predistribution Schemes,” The Fifth Annual IEEE Information Assurance Workshop, New York, 2004. [41] Y. Richard Yang, X. Steve Li, X. Brian Zhang, S. Simon Lam, “Reliable Group Rekeying: A Performance Analysis,” ACM Annual Conference of the Special Interest Group on Data Communication, Vol. 31, Issue 4, 2001. [42] Y. Sang, H. Shen, Y. Inoguchi, Y. Tan, N. Xiong, “Secure Data Aggregation in Wireless Sensor Networks: A Survey”, Parallel and Distributed Computing, Applications and Technologies, IEEE Computer Society, pp.315-320, 2006. [43] R. A. Shaikh, S. Lee, Y. J. Song, and Y. Zhung, “Securing Distributed Wireless Sensor Networks: Issues and Guidelines”, Sensor Networks, Ubiquitous, and Trustworthy Computing, Vol.2, pp.226-231, 2006. [44] A. Shamir, “How to Share a Secret”, CACM, Vol.22, pp.612-613, 1979. [45] E. Stajano, R. Anderson, “The Resurrecting Duckling: Security Issues in Ad-Hoc Wireless Networks,” International Workshop on Security Protocols, 1999. [46] S. Tilak, N. B. abu-Ghazaleh and W. Heinzelman, “Taxonomy of Sensor Network Communication Models”, Mobile Computing and Communication, Vol. 6(2): 18, Apr 2002. [47] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary, “Wireless Sensor Network Security: A Survey”, In Security in Distributed, Grid, and Pervasive Computing, CRC Press, pp.367-410, 2006. [48] Y. Wang, G. Attebury, and B. Ramamurthy, “A Survey of Security Issues in Wireless Sensor Networks”, IEEE Communications Surveys-Tutorials, Vol.8, No.2, pp.2-23, 2006. [49] C. L. Wang, G.. Horng, Y. S. Chen and T. P. Hong, "An efficient key-update scheme for wireless sensor networks", Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, 2006. [50] C.L. Wang, T.P. Hong, G. Horng, and W.H. Wang, "A GA-Based Key-Management Scheme in Hierarchical Wireless Sensor Networks", will appear in International Journal of Innovative Computing Information and Control, 2009. [51] A. Weimerskirch and G. Thonet, “A Distributed Light-Weight Authentication Model for Ad-hoc Networks,” International Conference on Information Security and Cryptology, 2001. [52] D. Westhoff, J. Girao, M. Acharya, “Concealed Data Aggregation for Reverse Multicast Traffic in Sensor Networks: Encryption, Key Distribution, and Routing Adaptation”, IEEE Transactions on Mobile Computing, Vol.5, pp.1417-1431, 2006. [53] Y. Yang, X. Wang, S. Zhu, “SDAP: A Secure Hop-by-Hop Data Aggregation Protocol for Sensor Networks”, Mobile Ad Hoc Networking and Computing, pp.356-369, 2006. [54] S. Zhu, S. Setia and S. Jajodia, “LEAP: Efficient Security Mechanisms for Large-Scale Distributed Sensor Networks,” ACM Conference on Computer and Communications Security, 2003.
摘要: 隨著資訊科技的發展,生活上的科技產品越來越精細,而這些精細的產品有一共通特性:細、薄、輕、結構簡單、成本低。要達成這些特性,其構成元件必須『精簡』;所以在構成元件之電源提供、記憶體、運算能力、通訊能力等都受到嚴重的限制。而這些產品可以透過無線通訊建立無線網路。當這無線網路是由一些結構簡單、成本便宜的感知元件構成,則稱之為無線感知網路。 過去20多年來,因為這些嚴格的限制,使得我們一般所用的公開金鑰協定這類的演算法都不適用於感知網路,其原因為計算量大,不適用於計算能力小的裝置,就算勉強套用公開金鑰,其能源消耗、記憶體消耗都是大問題。然而,無線感知網路因為佈置在外,所以能源為一重要考量因素。沒有能源,一切免談。一個安全的無線感知網路,若是沒有好的金鑰管理機制,那收集的資料將被惡意的攻擊者進行竄改;且若是沒有一個好的省能機制,則當能源耗盡,整個網路將無法運轉。所以本文專注在如何在無線感知網路上節省能源。 本論文針對無線感知網路安全議題之研究主要有兩個方向:省能之金鑰管理與省能之資料加總。首先,針對感知網路佈置後,如何在省能下進行金鑰更新;其次針對感知網路之收集資料,進行密文加總。 在金鑰管理方面,我們提出一個利用區塊金鑰組合函數的觀念。利用此組合函數可以產生出n!個金鑰。而此金鑰函數在產生金鑰時,其過程消耗之能源是可預期的。進而進行能源控管。而此函數提出後,我們接著利用基因演算法進行最佳化,找出在某些特定條件下符合能源消耗的金鑰組合函數。此金鑰組合函數可以達到任兩點皆可建立連線、記憶體消耗小、能源消耗少等特性。 在感應資料加總方面,我們提出一個利用秘密分享結合隱藏資料加總機制,來降低傳送資料量達到省能目的。在實際應用下感知器因為成本便宜,故故障率高。當感知器故障數目增加時,其他機制不是需耗費大量能源傳送故障感知器之辯證碼就是金鑰管理並不安全;而我們的方法則可以不受此影響,傳送之資料量固定且利用秘密分享之方式使得攻擊者需要至少攻陷c個點才能得知該區域內之金鑰。
Over the last two decades, we have seen growing importance placed on research in wireless sensor networks (WSNs). A WSN is composed of hundreds of thousands tiny devices, some headers, and some sink nodes. The headers and forward nodes are more powerful than sensor nodes. A sink node is usually a server and is located at a safe location. Generally, there are four main constraints of a sensor node, namely battery energy, computation capability, memory size, and communication protocols. Many literatures investigate security issues including: key management, location deployment, concealed data aggregation (CDA), routing paths and so on. However, the issue of saving power is aimed in this dissertation. To deal with this problem, two rekeying schemes and a concealed data aggregation scheme under power-saving are proposed. This dissertation is composed of two parts, one is rekeying schemes based on code slices, and another is concealed data aggregation scheme based on secret sharing. In the first part, two reliable and efficient rekeying schemes for wireless sensor networks are proposed. One is an efficient rekeying scheme based on code slices, and another is an efficient key management scheme based on genetic algorithms. The sensor system is divided into sinks, headers and sensor nodes. The sink nodes find out a lower power consumption rekeying function and broadcast it randomly. The headers and sensor nodes will collaborate and assemble the code slices to finish the rekeying. Experiments show that the proposed schemes can find the lower power consumption rekeying functions and consume the energy smoothly. In end-to-end encryption, how to maintain security has become a challenging research issue. To save the overall energy resources and maintain the security, computation cost needs to reduce as well as the amount of encrypted data transmitting through the wireless sensor networks. One plausible approach is to consolidate the encrypted data along the routing path. In the second part, a novel concealed data aggregation scheme is proposed to save power by reducing the delivering package sizes. It is provably secure up to some fixed number of compromised nodes.
URI: http://hdl.handle.net/11455/19506
其他識別: U0005-0601200909240000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0601200909240000
Appears in Collections:資訊科學與工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.