Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLee, Chun-Yenen_US
dc.identifier.citation[1] S. Al-Riyami and K. Paterson, “Certificateless public key cryptography”, Proc. of ASIACRYPT 2003, LNCS 2894, Springer-Verlag, pp. 452-473, 2003. [2] M. Abe, M. Ohkubo, K. Suzuki, “Efficient Threshold Signer-Ambiguous Signatures from Variety of Keys”, IEICE Transactions Vol.E87-1 No.2. pp. 471-479, 2004. [3] D. Boneh and X. Boyen, “Short Signatures without Random Oracles,” Proc. of EUROCRYPT 2004, LNCS 3027, Springer-Verlag, pp. 56-73, 2004. [4] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,” Proc. of CRYPTO 2001, LNCS 2139, Springer-Verlag, pp.213-229, 2001. [5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate and verifiably encrypted signatures from bilinear maps,” Proc. of EUROCRYPT 2003, LNCS 2656, Springer-Verlag, pp. 416-32, 2003. [6] E. Bresson, J. Stern, and M. Szydlo, “Threshold ring signatrues and applications to ad-hoc groups,” Proc. of CRYPTO 2002, LNCS 2442, Springer-Verlag, pp.465-480, 2002. [7] D. Boneh, H. Shacham, and B. Lynn, “Short signatures from the Weil pairing, “ Journal of Cryptology, Vol. 17, No. 4, pp. 297-319, 2004. [8] D. Chaum and E. Heyst, “Group signatures,” Proc. of EUROCRYPT, LNCS 547, Springer-Verlag, pp.257-265, 1991. [9] S. Chang, D.S. Wong, Y. Mu, and Z. Zhang, “Certificateless Threshold Ring Signature,” Information Sciences, Vol. 179, No. 20, pp. 3685-3696, 2009. [10] S. Chow, S. Yiu, “Identity based threshold ring signature,” Proc. of ICICS 2004, LNCS 3506, Springer-Verlag, pp. 218-232, 2005. [11] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. “Anonymous identification in ad-hoc groups,” Proc. of EUROCRYPT 2004, LNCS 3027, Springer-Verlag, pp.609-626, 2004. [12] T. ElGamal. “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Transactions on Information Theory, Vol.31, pp. 469-472, 1985. [13] G. Frey, and H.G. R”uck, “A remark concerning the m-divisibility and the discrete logarithm in the divisor class group of curves,” Mathematics of Computation 62, No.206 (1994), pp.865-874. [14] B. C. Hu, D. S. Wong, Z. Zhang, and X. Deng, “Key Replacement Attack Against a Generic Construction of Certificateless Signature,” ACISP 2006, LNCS 4058, Springer-Verlag, pp.235-246, 2006. [15] F. Hess, “Exponent Group Signature Schemes and Efficient Identity Based Signature Schemes Based on Pairings,” Cryptology ePrint Archive, Report 2002/012, available at [16] N. Koblitz, “Elliptic Curve Cryptosystem,” Mathematics of Computation 48, pp. 203-209, 1987. [17] V.Miller, “Use of Elliptic Curves in Cryptography,” Proc. of CRYPTO'85, LNCS 218, Springer-Verlag, pp. 417-426, 1986. [18] A.J. Menezes, T. Okamoto, and S.A. Vanstone, “Reducing Elliptic Curve Logarithms in a Finite Field,” IEEE Transactions on Information Theory, Vol. 39, pp.1693-1646, 1993. [19] D. Pointcheval and J. Stern, “Security proofs for signatures,” Proc. of EUROCRYPT 1996, Springer-Valag, pp.387-398, 1996. [20] R. L. Rivest, A.Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Communications of the ACM, Vol.21, No. 2, pp.120-126, 1978. [21] R. Rivest, A. Shamir, Y. Tauman, “How to leak a secret,” Proc. of ASIACRYPT 2001, LNCS 2248, Spring-verlag, pp. 552-565, 2001. [22] C.P. Schnorr. “Efficient signature generation by smart cards,” Journal of Cryptology, Vol. 4, No. 3, pp.161-174, 1991. [23] A. Shamir. “How to share a secret,” Communications of the ACM, Vol. 22, No. 11, pp. 612-613, 1979. [24] A. Shamir, “Identity based cryptosystems and signature schemes,” Proc. of CRYPTO 1984, LNCS 196, Springer-Verlag, pp. 47-53, 1984. [25] F. Zhang and K. Kim, “ID-based blind signature and ring signature form Parirings,” Proc. of ASIACRYPT 2002, LNCS 2501, Springer-Verlag, pp.533-547, 2002. [26] L. Zhang, F. Zhuang, W. Wu, “A provably secure ring signature scheme in certificateless cryptography,” Provsec 2007, LNCS 4784, Springer-Verlag, pp. 103-121, 2007. [27] F. Zhang, R Safavi-Naini, and W. Susilo, “An Efficient Signature Scheme from Bilinear Pairings and Its Application”, Public Key Cryptography - PKC 2004, LNCS 2947, Springer-Verlag, pp. 277-290, 2004.zh_TW
dc.description.abstract為了解決在傳統公開金鑰系統下公鑰憑證,以及在基於身份公開金鑰密碼系統下金鑰託管的問題。免憑證公開金鑰密碼系統(certificateless public key cryptography)於2003年亞洲密碼學會議由Al-Riyami和Paterson首次提出。而後,對於免憑證密碼系統的研究陸續被提出。在2009年Chang等學者提出基於pairing的免憑證門檻型環簽章。由群組內的一個人(或一定數量的人),產生代表所有群組成員的環簽章,而驗證者可以驗證此簽章來自此群組,但是卻不知道由群組內哪個成員所簽屬。於本論文中,我們提出一個有效率的免憑證密碼系統之環簽章機制。此方法不使用複雜的pairing計算,其安全性建構在解離散對數問題下。zh_TW
dc.description.abstractFor solving the key escrow problem in identity-based public key cryptography, certificateless public key cryptography was first invented in 2003 by Al-Riyami and Paterson. With the develop of certificateless cryptography, many related studies have been proposed, such as certificateless encryption and certificateless signature. In 2009, Chang et al. presented a certificateless threshold ring signature scheme. Any member can generate a ring signature to represent n members in this group, and the verifier only knows this signature is from the group. In this thesis, we propose an efficient certificateless threshold ring signature scheme without pairing. In addition, it is provably secure based on the discrete logarithm problem.en_US
dc.description.tableofcontents目錄 摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VI 一、緒論 1 1-1研究背景與動機 1 1-2研究貢獻 4 1-3論文架構 5 二、研究背景 6 2-1加密技術 6 2-2數位簽章 9 2-2-1RSA數位簽章 10 2-2-2ElGamal數位簽章 11 2-2-3Schnorr數位簽章 13 2-3橢圓曲線 15 2-3-1橢圓曲線基本定義 15 2-3-2橢圓曲線加法與乘法規則 16 2-3-3雙線性配對 19 2-4免憑證簽章密碼系統 21 2-5環簽章密碼系統 23 2-6免憑證門檻型環簽章架構 27 2-7安全模型 28 三、Chang等學者之免憑證門檻型環簽章機制 32 四、改進之免憑證環簽章 34 4-1提出的機制 34 4-2安全分析 41 4-3延伸架構 46 4-4效率分析 48 五、結論與未來方向 49 參考文獻與書目 50zh_TW
dc.titleAn Efficient Certificateless Ring Signature Schemeen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:資訊科學與工程學系所


Show simple item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.