Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/19968
標題: 使用虛擬量測調控TFT-LCD製程的液晶滴入量
Adaptive Control of LC Drops for TFT-LCD Process Using Virtual Metrology
作者: 林能生
Lin, Neng-Sheng
關鍵字: 虛擬量測
Virtual Measurements
主成分分析
類神經網路
Principal Component Analysis
Neural- Networks
出版社: 資訊科學與工程學系所
引用: [1] 友達光電股份有限公司,http://www.auo.com [2] 維基百科,薄膜電晶體液晶顯示器,http://zh.wikipedia.org/wiki/%E8%96%84%E8%86%9C%E9%9B%BB%E6%99%B6%E9%AB%94%E6%B6%B2%E6%99%B6%E9%A1%AF%E7%A4%BA%E5%99%A8 [3] 維基百科,液晶,http://zh.wikipedia.org/wiki/%E6%B6%B2%E6%99%B6 [4] 維基百科,主成分分析,http://zh.wikipedia.org/wiki/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 [5] Google,主成分分析的原理,http://web.ntpu.edu.tw/~ccw/statmath/M_pca.pdf [6] 類神經網路大師,新鼎系統股份有限公司,http://www.acs.com.tw/big5/program/NeuroNet%20Master/tw/default.htm [7] Google,平面螢幕TFT-LCD 原理應用,http://www.digital.idv.tw/DIGITAL/Classroom/MROH-CLASS/oh62/index-oh62.htm [8] 許千樹,「液晶之種類及物理化學特性」,經濟部技術處液晶顯示器技術手冊,2002。 [9] 陳連春 著,「LCD彩色液晶顯示器原理與技術」,建興出版社,1998。 [10] 楊志偉,「類神經網路於虛擬量測系統之應用」,中興大學資訊科學與工程學所,碩士論文,2009。 [11] 陳詩絢,「二階段變數選取方法應用於半導體製程的虛擬量測之研究」,中興大學資訊科學與工程學所,碩士論文,2012。 [12] 葉耀智、鄭芳田,「類神經網路虛擬量測之參數篩選與精度精進」,成功大學製造工程學所,碩士論文,2007。 [13] 廖泰翔、鄭芳田,「以GRNN為預測工具之虛擬量測」,成功大學製造工程學所,碩士論文,2008。 [14] 廖泰翔、鄭芳田,「以GRNN為預測工具之虛擬量測」,成功大學製造工程學所,碩士論文,2008。 [15] P. H. Chen, S. Wu, J. Lin, F. Ko, H. Lo, J. Wang, C. Yu and M. S. Liang, “Virtual metrology: A solution for wafer to wafer advanced process control,” IEEE International Symposium on Semiconductor Manufacturing , pp. 155-157, 2005. [16] I. T. Jolliffe and MyiLibrary, Principal Component Analysis.Wiley Online Library, 2002. [17] F. T. Cheng, Y. T. Chen, Y. C. Su, and D. L. Zeng, “Evaluating reliance level of a virtual metrology system,” IEEE Transactions on Semiconductor Manufacturing , vol. 21, pp. 92-103, 2008. [18] Y. C. Su, M. H. Hung, F. T. Cheng, and Y. T. Chen, “A processing quality prognostics scheme for plasma sputtering in TFT-LCD manufacturing,”IEEE Transactions on Semiconductor Manufacturing, vol. 19, pp. 183-194,2006. [19] S. A.DeLurgio, Forecasting Principles and Applications. Irwin/McGraw-Hill Boston, MA, 1998
摘要: 液晶顯示器 (Thin-Film Transistor Liquid-Crystal Display,TFT-LCD)在眾多平面顯示器中其技術發展最為成熟且被廣泛應用在日常電子產品。近年來尺寸越做越大,液晶顯示器技術也不斷再創新,品質、成本、良率也成為要求重點。為因應大尺寸面版生產而研發液晶滴入式(One Drop Fill,ODF)製程技術,液晶面版中的液晶層間隙(Cell Gap)內液晶量與間隔柱高度有強正相關。當間隔柱的高低不一致時,影響到液晶層間隙(Cell Gap)空間大小,則伴隨著面版液晶量過多或過少的問題,其風險將影響產品品質不良。本研究將藉由預測量測間隔柱的高度變異,預測ODF製程中液晶層間隙(Cell Gap),達到能自動調整所搭配液晶量的回饋機制自動調整液晶滴入量方法。
TFT-LCD (Thin-Film Transistor Liquid-Crystal Display,TFT-LCD) in a number of flat-panel display technology is the most mature and widely used in everyday electronics. Size bigger in recent years, LCD technology has also been re-innovation, quality, cost, yield requirements focus. Developed in response to the large-size panel production LCD trickle-down (One Drop Fill,ODF) process technology, the Cell Gap LCD panel liquid crystal amount and interval column height was strongly correlated with. Cell Gap affect when the level of inconsistent interval column space size, is accompanied by the panel LCD excessive or too little, will affect the risk of poor product quality. This study by the high degree of variability of the the predictive measurement interval column, predicted the ODF process the Cell Gap, reach can automatically adjust the amount of feedback mechanism with LCD automatically adjusts LCD trickle amount method.
URI: http://hdl.handle.net/11455/19968
其他識別: U0005-2504201316353100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2504201316353100
Appears in Collections:資訊科學與工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.