Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2014
標題: 一個蛇行管式交叉流熱交換器之性能測試
Performance Testing of a Crossflow Heat Exchanger with Serpentine Tube Arrangement
作者: 林俊憲
Lin, Gean-Sheng
關鍵字: crossflow
交叉流
heat exchanger
Reynolds number
effectiveness
Ntu
two-dimensional channel
熱交換器
雷諾數
熱效率
Ntu
平行管道
出版社: 機械工程學系所
引用: 參考文獻 [1] H.A. Mohammed, Y.K. Salman, “Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder”, Applied Thermal Engineering, Vol. 27, pp. 1522-1533, 2007. [2] S. Maruyama, T. Aoki, K. Igarashi, S. Sakai, “Development of a high efficiency radiation converter using a spiral heat exchanger”, Energy, Vol. 30, pp. 359-371, 2005. [3] J.C. Ho, N.E. Wijeysundera, “An unmixed-air flow model of a spiral coil cooling dehumidifying unit”, Applied Thermal Engineering, Vol. 19, pp. 865-883, 1999. [4] H.A. Mohammed, Y.K. Salman, “Combined convection heat transfer for thermally developing aiding flow in an inclined circular cylinder with constant heat flux”, Applied Thermal Engineering, Vol. 27, pp. 1236-1247, 2007. [5] M. Ciofalo, I. Di Piazza, J. A. Stasiek, “Investigation of flow and heat transfer in corrugated-undulated plate heat exchangers”, Heat and Mass Transfer, Vol. 36, pp. 449-462, 2000. [6] J.Y. Jang, M.T. Wang, “Transient response of crossflow heat exchangers with one fluid mixed”, International Journal of Heat and Fluid Flow, Vol. 8, No. 3, pp. 182-186, 1987. [7] J.R. Burns, R.J.J. Jachuck, “Condensation studies using cross-corrugated polymer film compact heat exchanger”, Applied Thermal Engineering, Vol. 21, pp. 495-510, 2001. [8] P.M. Ligrani, S. Choi, “Mixed convection in straight and curved channels with buoyancy orthogonal to the forced flow”, International Journal of Heat and Mass Transfer, Vol. 39, No. 12, pp. 2473-2484, 1996. [9] S. Dutta, X. Zhang, J.A. Khan, D. Bell, “Adverse and favorable mixed convection heat transfer in a two-side heated square channel”, Experimental Thermal and Fluid Science, Vol. 18, pp. 314-322, 1999. [10] Z.A. Hammou, B. Benhamou, N. Galanis, J. Orfi, “Laminar mixed convection of humid air in a vertical channel with evaporation or condensation at the wall”, International Journal of Thermal Sciences, Vol. 43, pp. 531-539, 2004. [11] W. Yu, S.U.S. Choi, D.M. France, M.W. Wambsganss, “Single-sided steam condensing inside a rectangular horizontal channel”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 3715-3724, 2002. [12] A.B. Mohamed, J. Orfi, C. Debissi, S. Ben Nasrallah, “Condensation of water vapor in a vertical channel by mixed convection of humid air in the presence of a liquid film flowing down”, Deaslination, Vol. 204, pp. 471-481, 2007. [13] N.E. Wijeysundera, J.C. Ho, S. Rajasekar, “The effectiveness of a spiral coil heat exchanger”, International Communication of Heat and Mass Transfer, Vol. 23, No. 5, pp. 623-631, 1996. [14] D.G. Prabhanjan, G.S.V. Raghavan, T.J. Rennie, “Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger”, International Communication of Heat and Mass Transfer, Vol. 29, No. 2, pp. 185-191, 2002. [15] T.J. Rennie, V.G.S. Raghavan, “Experimental studies of a double-pipe helical heat exchanger”, Experimental Thermal and Fluid Science, Vol. 29, pp. 919-924, 2005. [16] F.P. Incropera, D.P. De Witt, Fundamentals of heat and mass transfer, Third Edition, John Wiley & Sons, 1990. [17] C.Y. Park, P. Hrnjak, “Effect of heat conduction through the fins of a microchannel serpentine gas cooler of transcritical system”, International Journal of Refrigeration, Vol. 30, pp. 389-397, 2007. [18] T.L. Ngo, Y. Kato, K. Nikitin, T. Ishizuka, “Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles”, Experimental Thermal and Fluid Science, Vol. 32, pp. 560-570, 2007. [19] R. Yun, Y. Kim, C. Park, “Numerical analysis on a microchannel evaporator designed for air-conditioning systems”, Applied Thermal Engineering, Vol. 27, pp. 1320-1326, 2007.
摘要: 摘要 此研究設計與製作完成一個材質為SUS304不銹鋼之垂直交叉流之熱交換器,此熱交換器中平行管道之氣體側管道間隙為1.4 mm,管道之截面積為20 mm 40 mm,水流側共計有15排之管道,氣體側中則有14排之平行管道,水流於管內乃呈蛇行之方式流動,氣體則由各相鄰兩長方型管間窄小之平行管道中(垂直於水流之方向)通過。實驗中氣體-水流之熱容比為趨近0,空氣於平行管道中之流場乃控制為層流,雷諾數之範圍為178 ~ 1188,而Gr / Re值乃小於0.574,因此平行管道中自然熱對流之影響可被忽略。不同氣體流量下熱交換器之熱效率( )與氣體側之壓降( P)乃經量測而獲得,此熱效率經理論模式轉換而得到熱交換器之Ntu,並進而獲得氣體側之平均熱對流係數,此熱傳之資料並經迴歸分析而得到 Pr = 1.071 Re 之關係,而量測所得之摩擦係數(f)亦經迴歸分析而表示為雷諾數之函數。此研究同時得到熱交換器中氣體側之前後壁面熱傳量與熱交換器整體熱傳量之比率,結果顯示此比率乃隨著雷諾數之增加而變小,其數值則介於0.12 ~ 0.20之範圍間。 關鍵字:交叉流、熱交換器、雷諾數、熱效率、Ntu、平行管道
URI: http://hdl.handle.net/11455/2014
其他識別: U0005-1007200812053600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1007200812053600
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.