Please use this identifier to cite or link to this item:
標題: 腺苷磷酸活化激酶在Imiquimod與Compound C誘導之細胞自噬所扮演之角色
Role of AMPK in Imiquimod-induced and Compound C-induced Autophagy
作者: 陳育瑜
Chen, Yu-Yu
關鍵字: AMPK
compound c
出版社: 生物醫學研究所
引用: 1. Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007. 8(9): p. 741-52. 2. Shintani, T. and D.J. Klionsky, Autophagy in health and disease: a double-edged sword. Science, 2004. 306(5698): p. 990-5. 3. Rubinsztein, D.C., et al., Potential therapeutic applications of autophagy. Nat Rev Drug Discov, 2007. 6(4): p. 304-12. 4. Cuervo, A.M., et al., Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004. 305(5688): p. 1292-5. 5. Kaushik, S., et al., Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell, 2008. 19(5): p. 2179-92. 6. Yorimitsu, T. and D.J. Klionsky, Autophagy: molecular machinery for self-eating. Cell Death Differ, 2005. 12 Suppl 2: p. 1542-52. 7. Lum, J.J., R.J. DeBerardinis, and C.B. Thompson, Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol, 2005. 6(6): p. 439-48. 8. Baehrecke, E.H., Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 2005. 6(6): p. 505-10. 9. Levine, B. and J. Yuan, Autophagy in cell death: an innocent convict? J Clin Invest, 2005. 115(10): p. 2679-88. 10. Danial, N.N. and S.J. Korsmeyer, Cell death: critical control points. Cell, 2004. 116(2): p. 205-19. 11. Miller, R.L., et al., Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol, 1999. 21(1): p. 1-14. 12. Tyring, S., Imiquimod applied topically: A novel immune response modifier. Skin Therapy Lett, 2001. 6(6): p. 1-4. 13. Lacarrubba, F., M.R. Nasca, and G. Micali, Advances in the use of topical imiquimod to treat dermatologic disorders. Ther Clin Risk Manag, 2008. 4(1): p. 87-97. 14. Schon, M.P. and M. Schon, Immune modulation and apoptosis induction: two sides of the antitumoral activity of imiquimod. Apoptosis, 2004. 9(3): p. 291-8. 15. Schon, M., et al., Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J Natl Cancer Inst, 2003. 95(15): p. 1138-49. 16. Stary, G., et al., Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med, 2007. 204(6): p. 1441-51. 17. Smits, E.L., et al., The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist, 2008. 13(8): p. 859-75. 18. Schon, M.P., et al., Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod. J Invest Dermatol, 2004. 122(5): p. 1266-76. 19. Delgado, M.A., et al., Toll-like receptors control autophagy. EMBO J, 2008. 27(7): p. 1110-21. 20. Gutierrez, M.G., et al., Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004. 119(6): p. 753-66. 21. Lee, J., et al., Activation of anti-hepatitis C virus responses via Toll-like receptor 7. Proc Natl Acad Sci U S A, 2006. 103(6): p. 1828-33. 22. Hemmi, H., et al., Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol, 2002. 3(2): p. 196-200. 23. Wang, W. and K.L. Guan, AMP-activated protein kinase and cancer. Acta Physiol (Oxf), 2009. 196(1): p. 55-63. 24. Towler, M.C. and D.G. Hardie, AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res, 2007. 100(3): p. 328-41. 25. Hudson, E.R., et al., A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol, 2003. 13(10): p. 861-6. 26. Polekhina, G., et al., AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol, 2003. 13(10): p. 867-71. 27. Iseli, T.J., et al., AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270). J Biol Chem, 2005. 280(14): p. 13395-400. 28. Hardie, D.G., AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 2007. 8(10): p. 774-85. 29. Herrero-Martin, G., et al., TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J, 2009. 28(6): p. 677-85. 30. Woods, A., et al., LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol, 2003. 13(22): p. 2004-8. 31. Shaw, R.J., Glucose metabolism and cancer. Curr Opin Cell Biol, 2006. 18(6): p. 598-608. 32. Hawley, S.A., et al., Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab, 2005. 2(1): p. 9-19. 33. Hurley, R.L., et al., The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem, 2005. 280(32): p. 29060-6. 34. Woods, A., et al., Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab, 2005. 2(1): p. 21-33. 35. Hattori, Y., et al., High molecular weight adiponectin activates AMPK and suppresses cytokine-induced NF-kappaB activation in vascular endothelial cells. FEBS Lett, 2008. 582(12): p. 1719-24. 36. Momcilovic, M., S.P. Hong, and M. Carlson, Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem, 2006. 281(35): p. 25336-43. 37. Jin, Q., et al., Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. Cancer Res, 2007. 67(24): p. 11630-9. 38. Park, H.U., et al., AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther, 2009. 8(4): p. 733-41. 39. Xu, Z.X., et al., A plant triterpenoid, avicin D, induces autophagy by activation of AMP-activated protein kinase. Cell Death Differ, 2007. 14(11): p. 1948-57. 40. Isakovic, A., et al., Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci, 2007. 64(10): p. 1290-302. 41. Shaw, M.M., et al., 5''AMP-activated protein kinase alpha deficiency enhances stress-induced apoptosis in BHK and PC12 cells. J Cell Mol Med, 2007. 11(2): p. 286-98. 42. Zhou, W., et al., Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer Res, 2007. 67(7): p. 2964-71. 43. Vucicevic, L., et al., AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochem Pharmacol, 2009. 77(11): p. 1684-93. 44. Han, J.H., et al., Involvement of AMP-activated protein kinase and p38 mitogen-activated protein kinase in 8-Cl-cAMP-induced growth inhibition. J Cell Physiol, 2009. 218(1): p. 104-12. 45. Chiang, P.C., et al., Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem Pharmacol, 2010. 79(2): p. 162-71. 46. Hsu, Y.C., et al., Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells. Cell Signal, 2010. 22(4): p. 590-9. 47. Meley, D., et al., AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem, 2006. 281(46): p. 34870-9. 48. Yan, J., et al., Autophagy augmented by troglitazone is independent of EGFR transactivation and correlated with AMP-activated protein kinase signaling. Autophagy, 2010. 6(1): p. 67-73. 49. Law, B.Y., et al., Alisol B, a novel inhibitor of the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase pump, induces autophagy, endoplasmic reticulum stress, and apoptosis. Mol Cancer Ther, 2010. 9(3): p. 718-30. 50. Grotemeier, A., et al., AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal, 2010. 22(6): p. 914-25. 51. Hawley, S.A., et al., Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab, 2010. 11(6): p. 554-65. 52. Abbott, M.J., A.M. Edelman, and L.P. Turcotte, CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 2009. 297(6): p. R1724-32. 53. Anderson, K.A., et al., Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab, 2008. 7(5): p. 377-88. 54. Merlin, J., et al., The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK-AMPK-dependent mechanism. Cell Signal, 2010. 22(7): p. 1104-13. 55. McGee, S.L., et al., Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice. J Physiol, 2008. 586(6): p. 1731-41. 56. Scholz, R., et al., Autoactivation of transforming growth factor beta-activated kinase 1 is a sequential bimolecular process. J Biol Chem, 2010. 285(33): p. 25753-66. 57. Lee, Y.S., et al., AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone, 2010. 47(5): p. 926-37. 58. Tokumitsu, H., et al., STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J Biol Chem, 2002. 277(18): p. 15813-8. 59. Ninomiya-Tsuji, J., et al., A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem, 2003. 278(20): p. 18485-90. 60. Shaw, R.J., LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf), 2009. 196(1): p. 65-80. 61. Papandreou, I., et al., Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ, 2008. 15(10): p. 1572-81. 62. Harhaji-Trajkovic, L., et al., AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumor cells. J Cell Mol Med, 2009. 63. Filomeni, G., et al., Carcinoma cells activate AMP-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment. Autophagy, 2010. 6(2): p. 202-16. 64. Egan, D.F., et al., Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 2010. 65. Huang, S.W., et al., Imiquimod Simultaneously Induces Autophagy and Apoptosis in Human Basal Cell Carcinoma Cells. Br J Dermatol, 2010. 66. Yi, J.Y., et al., Autophagy-mediated anti-tumoral activity of imiquimod in Caco-2 cells. Biochem Biophys Res Commun, 2009. 386(3): p. 455-8. 67. Delgado, M.A. and V. Deretic, Toll-like receptors in control of immunological autophagy. Cell Death Differ, 2009. 16(7): p. 976-83. 68. Meijer, A.J. and P. Codogno, AMP-activated protein kinase and autophagy. Autophagy, 2007. 3(3): p. 238-40. 69. Han, D., et al., Activation of autophagy through modulation of 5''-AMP-activated protein kinase protects pancreatic beta-cells from high glucose. Biochem J, 2010. 425(3): p. 541-51. 70. Sarbassov, D.D., S.M. Ali, and D.M. Sabatini, Growing roles for the mTOR pathway. Curr Opin Cell Biol, 2005. 17(6): p. 596-603. 71. Bain, J., et al., The selectivity of protein kinase inhibitors: a further update. Biochem J, 2007. 408(3): p. 297-315. 72. Tanida, I., T. Ueno, and E. Kominami, LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol, 2004. 36(12): p. 2503-18. 73. Boya, P., et al., Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 2005. 25(3): p. 1025-40. 74. Paglin, S., et al., A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res, 2001. 61(2): p. 439-44. 75. Yang, C., et al., Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol, 2008. 294(4): p. F777-87. 76. Jin, J., et al., AMPK inhibitor Compound C stimulates ceramide production and promotes Bax redistribution and apoptosis in MCF7 breast carcinoma cells. J Lipid Res, 2009. 50(12): p. 2389-97. 77. Jang, J.H., et al., Compound C sensitizes Caki renal cancer cells to TRAIL-induced apoptosis through reactive oxygen species-mediated down-regulation of c-FLIPL and Mcl-1. Exp Cell Res, 2010. 316(13): p. 2194-203. 78. Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ, 2005. 12 Suppl 2: p. 1463-7. 79. Jung, C.H., et al., mTOR regulation of autophagy. FEBS Lett, 2010. 584(7): p. 1287-95. 80. Shi, C.S. and J.H. Kehrl, MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem, 2008. 283(48): p. 33175-82. 81. Vucicevic, L., et al., Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy, 2011. 7(1). 82. Bartke, N. and Y.A. Hannun, Bioactive sphingolipids: metabolism and function. J Lipid Res, 2009. 50 Suppl: p. S91-6. 83. Ruvolo, P.P., Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res, 2003. 47(5): p. 383-92. 84. O''Byrne, D. and D. Sansom, Lack of costimulation by both sphingomyelinase and C2 ceramide in resting human T cells. Immunology, 2000. 100(2): p. 225-30. 85. Obeid, L.M., et al., Programmed cell death induced by ceramide. Science, 1993. 259(5102): p. 1769-71. 86. Scarlatti, F., et al., Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem, 2004. 279(18): p. 18384-91. 87. Peralta, E.R. and A.L. Edinger, Ceramide-induced starvation triggers homeostatic autophagy. Autophagy, 2009. 5(3): p. 407-9. 88. Hou, Q., et al., Mitochondrially targeted ceramide preferentially promotes autophagy, retards cell growth, and induces apoptosis. J Lipid Res, 2010. 89. Zhou, H., et al., Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem, 1998. 273(26): p. 16568-75. 90. Schubert, K.M., M.P. Scheid, and V. Duronio, Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem, 2000. 275(18): p. 13330-5.
摘要: Imiquimod,是類鐸受體7 ( Toll-like receptor 7,TLR7 ) 的配合體 ( ligand ),臨床上被用來治療光化角化症或是基底細胞癌 ( basal cell carcinoma,BCC ) 等皮膚腫瘤和病毒疣。之前的文獻指出 imiquimod 可活化巨噬細胞 ( macrophage ) 的 TLR7-MyD88 訊息傳遞而誘導細胞自噬 ( autophagy ) 的進行,而在近期的研究顯示,imiquimod 亦可在 BCC 誘導細胞自噬之進行。細胞自噬作用的其中一個一個最重要的負調控激酶為哺乳動物雷帕霉素標靶蛋白 ( mammalian target of rapamycin, mTOR ),當 mTOR 受到抑制時就會啟動下游訊息而誘發細胞自噬。而腺苷磷酸活化激酶 ( adenosine monophosphate -activated protein kinase, AMPK ) 即為 mTOR 最主要之負調控者之一,AMPK 會去磷酸化下游目標蛋白 raptor,達到抑制 mTOR 之活性。目前為止 Imiquimod 誘發基底細胞癌 ( basal cell carcinoma, BCC ) 細胞自噬的機制尚不明瞭,因此本論文將以 BCC 細胞株 ( cell line ) 作為生物模式,探討 imiquimod 刺激 BCC 進行細胞自噬的分子機制。我們首先證實了 imiquimod 能夠增加 BCC 細胞中 AMPK 之活性,隨著 imiquimod 的刺激時間的增加,使 LC3-II 增加的同時,磷酸化之 AMPK 以及其下游乙醯輔酶 A 羧化酶 ( acetyl-CoA carboxylase,ACC ) 之磷酸化蛋白表現量皆有上升的趨勢;在此同時,imiquimod 亦能夠抑制 mTOR 下游蛋白 p70S6K 之活性。因此我們進一步利用化學抑制劑以及 siRNA 核酸干擾技術與顯性負突變蛋白競爭抑制之不同方法來探討 AMPK 在 imiquimod 引發 BCC 細胞進行細胞自噬所扮演之角色。我們在實驗結果觀察到不論是使用 AMPK 抑制劑或是 siRNA 核酸干擾技術與顯性負突變蛋白競爭抑制方法,皆對於 imiquimod 刺激基底細胞癌細胞株 LC3-I 轉變成 LC3-II 的情況不產生抑制之效果。因此,我們認為增加 AMPK 之活化並不參與 imiquimod 誘導BCC細胞進行之細胞自噬。此外,我們利用流式細胞儀偵測細胞週期以及西方墨點法,也發現到 compound C 不僅具有引發基底細胞癌細胞株進行細胞凋亡以及 G2/M 細胞週期停滯之現象,此外,在 BCC 細胞、人類肝癌細胞株 ( HepG2 和 Hep3B )以及肺癌細胞株 ( A549 ) 中具有單獨使 LC3-I 轉變成 LC3-II、EGFP-LC3 puncta 和自噬囊泡形成以及數量增多的能力。使用 siRNA 核酸干擾技術實驗我們也證實了 compound C 誘導 BCC 細胞進行細胞自噬並不經由 AMPK 訊息傳導路徑。除了細胞自噬,我們也證實了 compound C 具有引發基底細胞癌細胞株進行細胞凋亡以及 G2/M 細胞週期停滯之現象。因此我們認為 compound C 本身即為一個強力的細胞自噬促進劑,且此能力並無細胞特異性。所以當實驗使用 compound C 來當作抑制劑來研究細胞內的反應時,必須特別注意 compound C 本身對於細胞的影響。而我們的實驗結果也指出 compound C 在未來有潛力來當作一個對抗癌症的研究對象。
Imiquimod, a Toll-like receptor 7 ( TLR7 ) ligand, it has shown clinical efficacy toward viral wart, actinic keratose and basal cell carcinoma ( BCC ). Recent studies have shown that imiquimod induce autophagy through TLR7-MyD88 signaling in macrophage cell lines, moreover, imiquimod also induce autophagy in BCC cell line. MTOR ( mammalian target of rapamycin ) is the one of important regulators of autophagy, inhibiting mTOR caused cell autophagy. The adenosine monophosphate ( AMP )-activated protein kinase ( AMPK ) serves as a key energy sensor in cells. AMPK is also an upstream regulator of the mTOR signaling and is able to stimulate the autophagy. However, the mechanism of imiquimod induces autophagy in BCC cells are not well understood. In this study, we used BCC cell line as an experiment model to investigate the role of AMPK in imiquimod-induced autophagy. First, we observed that when imiquimod induced LC3-I to LC3-II conversion in protein level, AMPK and ACC (acetyl-CoA carboxylase, a downstream protein of of AMPK ) phosphorylation were increased in BCC cell line; instead, phosphorylation of p70S6K, which is one of a downstream protein of mTOR, was decreased. Second, we used an AMPK and two upstream kinase of AMPK inhibitors ( compound C, sto-609 and 5-Z-7-oxozeaenol ) , and RNA interference technology, and dominant negative mutant competition to demonstrate whether imiquimod-induced autophagy is going through AMPK signaling pathway. We observed that imiquimod-induced autophagy was not changed by three chemical inhibitors or transfection of AMPK siRNA or dominant negative mutant AMPK competition. In present data indicated that AMPK activation by imiquimod has no benefit to imiquimod-induced autophagy. Furthermore, we also found out that compound C is not only able to cause G2/M cell cycle arrest and induce cell apoptosis by flow cytometry, but also induced the LC3-I to LC3-II conversion in protein level of A549, HepG2 and AGS cell line. Otherwise, we used the EGFP-LC3 stably expressing BCC and AGS cell lines to observe EGFP-LC3 puncta formation with compound C treatment in confocal microscope image. The acridine orange accumulation indicated the increasing of autophagolysosome formation in compound C treated BCC and AGS cell lines. Besides, we also investigated the role of AMPK in compound C-induced autophagy. These results suggested that compound C has potential to be an anticancer agents.
其他識別: U0005-2701201115072800
Appears in Collections:生物醫學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.