Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20150
標題: 酵母菌Rad23蛋白47位置絲氨酸的磷酸化降低與26S 蛋白酶體的結合能力及其所參與的蛋白質降解途徑
Phosphorylation of Serine 47 on Rad23 protein reduces the 26S proteasome binding ability and Rad23-mediated protein degradation in Saccharomyces cerevisiae
作者: 柯博庭
Ko, Bo-Ting
關鍵字: Rad23
酵母菌
phosphorylation
protein degradation
磷酸化
蛋白質降解
出版社: 生物醫學研究所
引用: Batty, D.P., and Wood, R.D. (2000). Damage recognition in nucleotide excision repair of DNA. Gene 241, 193-204. Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998). The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367-380. Bertolaet, B.L., Clarke, D.J., Wolff, M., Watson, M.H., Henze, M., Divita, G., and Reed, S.I. (2001). UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol 8, 417-422. Biggins, S., Ivanovska, I., and Rose, M.D. (1996). Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J Cell Biol 133, 1331-1346. Chen, L., and Madura, K. (2002). Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22, 4902-4913. Chen, L., Shinde, U., Ortolan, T.G., and Madura, K. (2001). Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep 2, 933-938. Clarke, D.J., Mondesert, G., Segal, M., Bertolaet, B.L., Jensen, S., Wolff, M., Henze, M., and Reed, S.I. (2001). Dosage suppressors of pds1 implicate ubiquitin-associated domains in checkpoint control. Mol Cell Biol 21, 1997-2007. Dantuma, N.P., Heinen, C., and Hoogstraten, D. (2009). The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 8, 449-460. de Boer, J., and Hoeijmakers, J.H. (2000). Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460. Diaz-Martinez, L.A., Kang, Y., Walters, K.J., and Clarke, D.J. (2006). Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Div 1, 28. Duesberg, P., Rasnick, D., Li, R., Winters, L., Rausch, C., and Hehlmann, R. (1999). How aneuploidy may cause cancer and genetic instability. Anticancer Res 19, 4887-4906. Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J., and Finley, D. (2004). Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279, 26817-26822. Elsasser, S., Gali, R.R., Schwickart, M., Larsen, C.N., Leggett, D.S., Muller, B., Feng, M.T., Tubing, F., Dittmar, G.A., and Finley, D. (2002). Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4, 725-730. Ferrell, K., Wilkinson, C.R., Dubiel, W., and Gordon, C. (2000). Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci 25, 83-88. Funakoshi, M., Geley, S., Hunt, T., Nishimoto, T., and Kobayashi, H. (1999). Identification of XDRP1; a Xenopus protein related to yeast Dsk2p binds to the N-terminus of cyclin A and inhibits its degradation. EMBO J 18, 5009-5018. Funakoshi, M., Sasaki, T., Nishimoto, T., and Kobayashi, H. (2002). Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc Natl Acad Sci U S A 99, 745-750. Ghaboosi, N., and Deshaies, R.J. (2007). A conditional yeast E1 mutant blocks the ubiquitin-proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. Mol Biol Cell 18, 1953-1963. Gillette, T.G., Huang, W., Russell, S.J., Reed, S.H., Johnston, S.A., and Friedberg, E.C. (2001). The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev 15, 1528-1539. Glickman, M.H., and Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82, 373-428. Glickman, M.H., Rubin, D.M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Baumeister, W., Fried, V.A., and Finley, D. (1998). A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615-623. Guzder, S.N., Sung, P., Prakash, L., and Prakash, S. (1997). Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J Biol Chem 272, 21665-21668. Guzder, S.N., Sung, P., Prakash, L., and Prakash, S. (1998). Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J Biol Chem 273, 31541-31546. Hartmann-Petersen, R., and Gordon, C. (2004). Protein degradation: recognition of ubiquitinylated substrates. Curr Biol 14, R754-756. Heessen, S., Masucci, M.G., and Dantuma, N.P. (2005). The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol Cell 18, 225-235. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425-479. Hwang, G.W., Sasaki, D., and Naganuma, A. (2005). Overexpression of Rad23 confers resistance to methylmercury in saccharomyces cerevisiae via inhibition of the degradation of ubiquitinated proteins. Mol Pharmacol 68, 1074-1078. Kang, Y., Vossler, R.A., Diaz-Martinez, L.A., Winter, N.S., Clarke, D.J., and Walters, K.J. (2006). UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain. J Mol Biol 356, 1027-1035. Koegl, M., Hoppe, T., Schlenker, S., Ulrich, H.D., Mayer, T.U., and Jentsch, S. (1999). A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635-644. Lambertson, D., Chen, L., and Madura, K. (2003). Investigating the importance of proteasome-interaction for Rad23 function. Curr Genet 42, 199-208. Lommel, L., Chen, L., Madura, K., and Sweder, K. (2000). The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair. Nucleic Acids Res 28, 4839-4845. Lommel, L., Ortolan, T., Chen, L., Madura, K., and Sweder, K.S. (2002). Proteolysis of a nucleotide excision repair protein by the 26 S proteasome. Curr Genet 42, 9-20. Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P.J., Bootsma, D., et al. (1994). Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 13, 1831-1843. Min, J.H., and Pavletich, N.P. (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570-575. Mueller, J.P., and Smerdon, M.J. (1996). Rad23 is required for transcription-coupled repair and efficient overrall repair in Saccharomyces cerevisiae. Mol Cell Biol 16, 2361-2368. Ortolan, T.G., Chen, L., Tongaonkar, P., and Madura, K. (2004). Rad23 stabilizes Rad4 from degradation by the Ub/proteasome pathway. Nucleic Acids Res 32, 6490-6500. Pickart, C.M. (1997). Targeting of substrates to the 26S proteasome. FASEB J 11, 1055-1066. Prakash, S., and Prakash, L. (2000). Nucleotide excision repair in yeast. Mutat Res 451, 13-24. Raasi, S., and Pickart, C.M. (2003). Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J Biol Chem 278, 8951-8959. Rao, H., and Sastry, A. (2002). Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J Biol Chem 277, 11691-11695. Rasnick, D., and Duesberg, P.H. (1999). How aneuploidy affects metabolic control and causes cancer. Biochem J 340 ( Pt 3), 621-630. Reed, S.I. (2003). Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 4, 855-864. Roos-Mattjus, P., and Sistonen, L. (2004). The ubiquitin-proteasome pathway. Ann Med 36, 285-295. Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., and Madura, K. (1998). Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715-718. Seeger, M., Ferrell, K., and Dubiel, W. (1997). The 26S proteasome: a dynamic structure. Mol Biol Rep 24, 83-88. Sugasawa, K., Masutani, C., Uchida, A., Maekawa, T., van der Spek, P.J., Bootsma, D., Hoeijmakers, J.H., and Hanaoka, F. (1996). HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol 16, 4852-4861. van Laar, T., van der Eb, A.J., and Terleth, C. (2002). A role for Rad23 proteins in 26S proteasome-dependent protein degradation? Mutat Res 499, 53-61. Verma, R., Oania, R., Graumann, J., and Deshaies, R.J. (2004). Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99-110. Watkins, J.F., Sung, P., Prakash, L., and Prakash, S. (1993). The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13, 7757-7765. Wilkinson, C.R., Seeger, M., Hartmann-Petersen, R., Stone, M., Wallace, M., Semple, C., and Gordon, C. (2001). Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3, 939-943. Wilkinson, K.D. (2000). Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11, 141-148.
摘要: Rad23為一個從酵母菌到人類間具有高度演化保留性的蛋白,研究證實Rad23參與細胞內的核苷酸修補機制及泛素系統所主導的蛋白質降解途徑並且扮演著重要的角色。然而,訊號傳遞機制如何調控Rad23參與這些系統仍舊未知。Rad23 UBL區塊可以被Rad53激酶磷酸化,以定位點突變技術及活體外激酶試驗證實Rad23蛋白47位置絲胺酸為Rad53磷酸化位置。S47位置磷酸化與否並不影響與Rad4之間的交互作用及Rad4蛋白的穩定性。有趣的是,S47的磷酸化降低酵母菌對UVC照射的存活率。活體內及活體外結合試驗則證實Rad23磷酸化顯著的降低與26S蛋白酶體的結合能力。另一方面,經由UFD途徑降解的Ub-Arg- and Ub-Pro-β-gal,在表現S47A的突變株中穩定性大為增加。另一方面,生理功能試驗則證實了UBA或UBL區塊的突變導致細胞喪失對不同的生存壓力的對抗能力。基於上述的結果,推測UBL區塊47位置絲胺酸的磷酸化降低Rad23蛋白與及26S蛋白酶體的結合能力及其所參與的蛋白質降解途徑。然而,訊號機制如何調控47位置絲胺酸的磷酸化仍須進一步的探討。
Rad23 is an evolutionarily conserved protein from yeast to human. Researches have demonstrated that Rad23 played an important role in both nuclear excision repair (NER) and ubiquitin-proteasome system (UPS) mediated protein degradation pathway. However, well-defined mechanisms control Rad23 in these systems still unavailable. Rad23 could be phosphorylated by Rad53 on UBL in vitro. Site-directed mutagenesis and in vitro kinase assay proved that Serine-47 could be phosphorylated by Rad53. S47A/E mutants do not affect the interaction of Rad4 and Rad4 protein stability. Interestingly, Serine-47 phosphorylation decreases survival rate under UVC irradiation. Besides, in vivo and in vitro binding assay showed that Rad23S47E significantly decreased the association with 26S subunits. Ub-Arg- and Ub-Pro-β-gal, the substrates of the ubiquitin-fusion degradation pathway, were significantly stabilized in cells expressing wild-type Rad23 and Rad23S47A, but not S47E mutant. In addition, biofunctional assay demonstrated that mutations in UBL or UBA domain reduced cells ability to against different survival stress. Based on these results, we suggest that the 26S proteasome binding ability and UPS-mediated proteolysis might be down-regulated by Serine-47 phosphorylation. However, the precisely molecular mechanisms control S47 phosphorylation should be further investigated.
URI: http://hdl.handle.net/11455/20150
其他識別: U0005-2907201016392300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907201016392300
Appears in Collections:生物醫學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.