Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20220
標題: Src可藉由活化Cdk5促進乳癌細胞骨架建構與細胞遷移
Src Might Promotes Cytoskeletal Organization and Cell Migration of Breast Cancer Cells through Regulating Cdk5 Activation
作者: 周敬唐
Jou, Jing-Tang
關鍵字: 乳癌
Breast cancer
細胞遷移
訊息傳遞
細胞骨架
Cdk5
Src
Rho GTPase
張力纖維
Focal adhesion
偽足
Migration
Signal transduction
Cytoskeleton
Cdk5
Src
Rho GTPase
Stress fiber
Focal adhesion
lamellipodium
出版社: 生命科學系所
引用: 1. Malumbres, M., and Barbacid, M. (2005) Mammalian cyclin-dependent kinases. Trends in biochemical sciences 30, 630-641 2. Malumbres, M., Harlow, E., Hunt, T., Hunter, T., Lahti, J. M., Manning, G., Morgan, D. O., Tsai, L. H., and Wolgemuth, D. J. (2009) Cyclin-dependent kinases: a family portrait. Nature cell biology 11, 1275-1276 3. Berthet, C., and Kaldis, P. (2007) Cell-specific responses to loss of cyclin-dependent kinases. Oncogene 26, 4469-4477 4. Davidson, G., and Niehrs, C. (2010) Emerging links between CDK cell cycle regulators and Wnt signaling. Trends in cell biology 20, 453-460 5. Dhavan, R., and Tsai, L. H. (2001) A decade of CDK5. Nature reviews. Molecular cell biology 2, 749-759 6. Lalioti, V., Pulido, D., and Sandoval, I. V. (2010) Cdk5, the multifunctional surveyor. Cell cycle 9, 284-311 7. Tarricone, C., Dhavan, R., Peng, J., Areces, L. B., Tsai, L. H., and Musacchio, A. (2001) Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell 8, 657-669 8. Pareek, T. K., Lam, E., Zheng, X., Askew, D., Kulkarni, A. B., Chance, M. R., Huang, A. Y., Cooke, K. R., and Letterio, J. J. (2010) Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. The Journal of experimental medicine 207, 2507-2519 9. Su, S. C., and Tsai, L. H. (2011) Cyclin-dependent kinases in brain development and disease. Annual review of cell and developmental biology 27, 465-491 10. Liebl, J., Furst, R., Vollmar, A. M., and Zahler, S. (2011) Twice switched at birth: cell cycle-independent roles of the "neuron-specific" cyclin-dependent kinase 5 (Cdk5) in non-neuronal cells. Cellular signalling 23, 1698-1707 11. Arif, A. (2012) Extraneuronal activities and regulatory mechanisms of the atypical cyclin-dependent kinase Cdk5. Biochemical pharmacology 84, 985-993 12. Contreras-Vallejos, E., Utreras, E., and Gonzalez-Billault, C. (2012) Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cellular signalling 24, 44-52 13. Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W. L., Lapuk, A., Neve, R. M., Qian, Z., Ryder, T., Chen, F., Feiler, H., Tokuyasu, T., Kingsley, C., Dairkee, S., Meng, Z., Chew, K., Pinkel, D., Jain, A., Ljung, B. M., Esserman, L., Albertson, D. G., Waldman, F. M., and Gray, J. W. (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer cell 10, 529-541 14. Goodyear, S., and Sharma, M. C. (2007) Roscovitine regulates invasive breast cancer cell (MDA-MB231) proliferation and survival through cell cycle regulatory protein cdk5. Experimental and molecular pathology 82, 25-32 15. Upadhyay, A. K., Ajay, A. K., Singh, S., and Bhat, M. K. (2008) Cell cycle regulatory protein 5 (Cdk5) is a novel downstream target of ERK in carboplatin induced death of breast cancer cells. Current cancer drug targets 8, 741-752 16. Liu, J. L., Wang, X. Y., Huang, B. X., Zhu, F., Zhang, R. G., and Wu, G. (2011) Expression of CDK5/p35 in resected patients with non-small cell lung cancer: relation to prognosis. Medical oncology 28, 673-678 17. Choi, H. S., Lee, Y., Park, K. H., Sung, J. S., Lee, J. E., Shin, E. S., Ryu, J. S., and Kim, Y. H. (2009) Single-nucleotide polymorphisms in the promoter of the CDK5 gene and lung cancer risk in a Korean population. Journal of human genetics 54, 298-303 18. Lin, H., Chen, M. C., Chiu, C. Y., Song, Y. M., and Lin, S. Y. (2007) Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol Chem 282, 2776-2784 19. Eggers, J. P., Grandgenett, P. M., Collisson, E. C., Lewallen, M. E., Tremayne, J., Singh, P. K., Swanson, B. J., Andersen, J. M., Caffrey, T. C., High, R. R., Ouellette, M., and Hollingsworth, M. A. (2011) Cyclin-dependent kinase 5 is amplified and overexpressed in pancreatic cancer and activated by mutant K-Ras. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 6140-6150 20. Feldmann, G., Mishra, A., Hong, S. M., Bisht, S., Strock, C. J., Ball, D. W., Goggins, M., Maitra, A., and Nelkin, B. D. (2010) Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. Cancer research 70, 4460-4469 21. Courapied, S., Sellier, H., de Carne Trecesson, S., Vigneron, A., Bernard, A. C., Gamelin, E., Barre, B., and Coqueret, O. (2010) The cdk5 kinase regulates the STAT3 transcription factor to prevent DNA damage upon topoisomerase I inhibition. J Biol Chem 285, 26765-26778 22. Strock, C. J., Park, J. I., Nakakura, E. K., Bova, G. S., Isaacs, J. T., Ball, D. W., and Nelkin, B. D. (2006) Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer research 66, 7509-7515 23. Hsu, F. N., Chen, M. C., Chiang, M. C., Lin, E., Lee, Y. T., Huang, P. H., Lee, G. S., and Lin, H. (2011) Regulation of androgen receptor and prostate cancer growth by cyclin-dependent kinase 5. J Biol Chem 286, 33141-33149 24. Kuo, H. S., Hsu, F. N., Chiang, M. C., You, S. C., Chen, M. C., Lo, M. J., and Lin, H. (2009) The role of Cdk5 in retinoic acid-induced apoptosis of cervical cancer cell line. The Chinese journal of physiology 52, 23-30 25. Ridley, A. J. (2001) Rho GTPases and cell migration. Journal of cell science 114, 2713-2722 26. Raftopoulou, M., and Hall, A. (2004) Cell migration: Rho GTPases lead the way. Developmental biology 265, 23-32 27. Burridge, K., and Wennerberg, K. (2004) Rho and Rac take center stage. Cell 116, 167-179 28. Nobes, C. D., and Hall, A. (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. The Journal of cell biology 144, 1235-1244 29. Allen, W. E., Zicha, D., Ridley, A. J., and Jones, G. E. (1998) A role for Cdc42 in macrophage chemotaxis. The Journal of cell biology 141, 1147-1157 30. Niggli, V. (1999) Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS letters 445, 69-72 31. Wicki, A., and Niggli, V. (2001) The Rho/Rho-kinase and the phosphatidylinositol 3-kinase pathways are essential for spontaneous locomotion of Walker 256 carcinosarcoma cells. International journal of cancer. Journal international du cancer 91, 763-771 32. Mitra, S. K., Hanson, D. A., and Schlaepfer, D. D. (2005) Focal adhesion kinase: in command and control of cell motility. Nature reviews. Molecular cell biology 6, 56-68 33. Parsons, J. T., Horwitz, A. R., and Schwartz, M. A. (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature reviews. Molecular cell biology 11, 633-643 34. Yeatman, T. J. (2004) A renaissance for SRC. Nature reviews. Cancer 4, 470-480 35. Finn, R. S. (2008) Targeting Src in breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 19, 1379-1386 36. Mayer, E. L., and Krop, I. E. (2010) Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clinical cancer research : an official journal of the American Association for Cancer Research 16, 3526-3532 37. Saad, F., and Lipton, A. (2010) SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer treatment reviews 36, 177-184 38. Kim, L. C., Song, L., and Haura, E. B. (2009) Src kinases as therapeutic targets for cancer. Nature reviews. Clinical oncology 6, 587-595 39. Tan, M., Li, P., Klos, K. S., Lu, J., Lan, K. H., Nagata, Y., Fang, D., Jing, T., and Yu, D. (2005) ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer research 65, 1858-1867 40. Knowlden, J. M., Hutcheson, I. R., Jones, H. E., Madden, T., Gee, J. M., Harper, M. E., Barrow, D., Wakeling, A. E., and Nicholson, R. I. (2003) Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144, 1032-1044 41. Masaki, T., Igarashi, K., Tokuda, M., Yukimasa, S., Han, F., Jin, Y. J., Li, J. Q., Yoneyama, H., Uchida, N., Fujita, J., Yoshiji, H., Watanabe, S., Kurokohchi, K., and Kuriyama, S. (2003) pp60c-src activation in lung adenocarcinoma. European journal of cancer 39, 1447-1455 42. Jallal, H., Valentino, M. L., Chen, G., Boschelli, F., Ali, S., and Rabbani, S. A. (2007) A Src/Abl kinase inhibitor, SKI-606, blocks breast cancer invasion, growth, and metastasis in vitro and in vivo. Cancer research 67, 1580-1588 43. Hiscox, S., Morgan, L., Green, T. P., Barrow, D., Gee, J., and Nicholson, R. I. (2006) Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast cancer research and treatment 97, 263-274 44. Xie, Z., and Tsai, L. H. (2004) Cdk5 phosphorylation of FAK regulates centrosome-associated miocrotubules and neuronal migration. Cell cycle 3, 108-110 45. Harada, T., Morooka, T., Ogawa, S., and Nishida, E. (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nature cell biology 3, 453-459 46. Brown, M., Jacobs, T., Eickholt, B., Ferrari, G., Teo, M., Monfries, C., Qi, R. Z., Leung, T., Lim, L., and Hall, C. (2004) Alpha2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 8994-9004 47. Fu, A. K., Fu, W. Y., Cheung, J., Tsim, K. W., Ip, F. C., Wang, J. H., and Ip, N. Y. (2001) Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nature neuroscience 4, 374-381 48. Fu, A. K., Fu, W. Y., Ng, A. K., Chien, W. W., Ng, Y. P., Wang, J. H., and Ip, N. Y. (2004) Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America 101, 6728-6733 49. Sharma, M. R., Tuszynski, G. P., and Sharma, M. C. (2004) Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. Journal of cellular biochemistry 91, 398-409 50. Liebl, J., Weitensteiner, S. B., Vereb, G., Takacs, L., Furst, R., Vollmar, A. M., and Zahler, S. (2010) Cyclin-dependent kinase 5 regulates endothelial cell migration and angiogenesis. J Biol Chem 285, 35932-35943 51. Gao, C. Y., Stepp, M. A., Fariss, R., and Zelenka, P. (2004) Cdk5 regulates activation and localization of Src during corneal epithelial wound closure. Journal of cell science 117, 4089-4098 52. Gao, C. Y., Zakeri, Z., Zhu, Y., He, H., and Zelenka, P. S. (1997) Expression of Cdk5, p35, and Cdk5-associated kinase activity in the developing rat lens. Developmental genetics 20, 267-275 53. Tripathi, B. K., and Zelenka, P. S. (2009) Cdk5-dependent regulation of Rho activity, cytoskeletal contraction, and epithelial cell migration via suppression of Src and p190RhoGAP. Mol Cell Biol 29, 6488-6499 54. Arpitha, P., Gao, C. Y., Tripathi, B. K., Saravanamuthu, S., and Zelenka, P. (2013) Cyclin-dependent kinase 5 promotes the stability of corneal epithelial cell junctions. Molecular vision 19, 319-332 55. Ahn, J. Y., Hu, Y., Kroll, T. G., Allard, P., and Ye, K. (2004) PIKE-A is amplified in human cancers and prevents apoptosis by up-regulating Akt. Proceedings of the National Academy of Sciences of the United States of America 101, 6993-6998 56. Huang, C., Rajfur, Z., Yousefi, N., Chen, Z., Jacobson, K., and Ginsberg, M. H. (2009) Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nature cell biology 11, 624-630 57. Qiao, F., Gao, C. Y., Tripathi, B. K., and Zelenka, P. S. (2008) Distinct functions of Cdk5(Y15) phosphorylation and Cdk5 activity in stress fiber formation and organization. Exp Cell Res 314, 3542-3550 58. Takahashi, K., and Suzuki, K. (2008) Requirement of kinesin-mediated membrane transport of WAVE2 along microtubules for lamellipodia formation promoted by hepatocyte growth factor. Exp Cell Res 314, 2313-2322 59. Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., Gertler, F. B., Vidal, M., Van Etten, R. A., and Tsai, L. H. (2000) Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633-646 60. Huveneers, S., and Danen, E. H. (2009) Adhesion signaling - crosstalk between integrins, Src and Rho. Journal of cell science 122, 1059-1069 61. Pellegrin, S., and Mellor, H. (2007) Actin stress fibres. Journal of cell science 120, 3491-3499 62. Russo, J. M., Florian, P., Shen, L., Graham, W. V., Tretiakova, M. S., Gitter, A. H., Mrsny, R. J., and Turner, J. R. (2005) Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology 128, 987-1001 63. Kato, G., and Maeda, S. (1999) Neuron-specific Cdk5 kinase is responsible for mitosis-independent phosphorylation of c-Src at Ser75 in human Y79 retinoblastoma cells. Journal of biochemistry 126, 957-961 64. Kato, G., and Maeda, S. (2003) Production of mouse ES cells homozygous for Cdk5-phosphorylated site mutation in c-Src alleles. Journal of biochemistry 133, 563-569 65. Pan, Q., Qiao, F., Gao, C., Norman, B., Optican, L., and Zelenka, P. S. (2011) Cdk5 targets active Src for ubiquitin-dependent degradation by phosphorylating Src(S75). Cell Mol Life Sci 68, 3425-3436 66. Hakak, Y., and Martin, G. S. (1999) Ubiquitin-dependent degradation of active Src. Current biology : CB 9, 1039-1042 67. Laszlo, G. S., and Cooper, J. A. (2009) Restriction of Src activity by Cullin-5. Current biology : CB 19, 157-162 68. Sasaki, Y., Cheng, C., Uchida, Y., Nakajima, O., Ohshima, T., Yagi, T., Taniguchi, M., Nakayama, T., Kishida, R., Kudo, Y., Ohno, S., Nakamura, F., and Goshima, Y. (2002) Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35, 907-920 69. Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003) Cell migration: integrating signals from front to back. Science 302, 1704-1709 70. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674 71. Lin, S., Wang, J., Ye, Z., Ip, N. Y., and Lin, S. C. (2008) CDK5 activator p35 downregulates E-cadherin precursor independently of CDK5. FEBS letters 582, 1197-1202 72. Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M., and Tsai, L. H. (2000) Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Current biology : CB 10, 363-372 73. Bjorge, J. D., Pang, A. S., Funnell, M., Chen, K. Y., Diaz, R., Magliocco, A. M., and Fujita, D. J. (2011) Simultaneous siRNA targeting of Src and downstream signaling molecules inhibit tumor formation and metastasis of a human model breast cancer cell line. PloS one 6, e19309 74. Leonard, M., Zhang, L., Bleaken, B. M., and Menko, A. S. (2013) Distinct roles for N-Cadherin linked c-Src and fyn kinases in lens development. Developmental dynamics : an official publication of the American Association of Anatomists 242, 469-484 75. Miyamoto, Y., Yamauchi, J., Chan, J. R., Okada, A., Tomooka, Y., Hisanaga, S., and Tanoue, A. (2007) Cdk5 regulates differentiation of oligodendrocyte precursor cells through the direct phosphorylation of paxillin. Journal of cell science 120, 4355-4366 76. Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., and Horwitz, A. F. (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature cell biology 6, 154-161 77. Hsia, D. A., Mitra, S. K., Hauck, C. R., Streblow, D. N., Nelson, J. A., Ilic, D., Huang, S., Li, E., Nemerow, G. R., Leng, J., Spencer, K. S., Cheresh, D. A., and Schlaepfer, D. D. (2003) Differential regulation of cell motility and invasion by FAK. The Journal of cell biology 160, 753-767 78. Moissoglu, K., and Gelman, I. H. (2003) v-Src rescues actin-based cytoskeletal architecture and cell motility and induces enhanced anchorage independence during oncogenic transformation of focal adhesion kinase-null fibroblasts. J Biol Chem 278, 47946-47959 79. Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., and Yamamoto, T. (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539-544 80. Avizienyte, E., and Frame, M. C. (2005) Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Current opinion in cell biology 17, 542-547 81. Contestabile, A., Bonanomi, D., Burgaya, F., Girault, J. A., and Valtorta, F. (2003) Localization of focal adhesion kinase isoforms in cells of the central nervous system. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 21, 83-93 82. Le Boeuf, F., Houle, F., Sussman, M., and Huot, J. (2006) Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by rho-dependent kinase and is essential for proline-rich tyrosine kinase-2-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor. Molecular biology of the cell 17, 3508-3520 83. Kawauchi, T., Chihama, K., Nabeshima, Y., and Hoshino, M. (2006) Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nature cell biology 8, 17-26 84. Weber, G. F., and Menko, A. S. (2006) Actin filament organization regulates the induction of lens cell differentiation and survival. Developmental biology 295, 714-729
摘要: 癌症轉移(Cancer Metastasis)是罹癌病患死亡的關鍵原因之一,因此預防及診斷癌症轉移是極為重要的治療手段。癌細胞遷移(Migration)的產生是癌症轉移的第一步,過去已有許多研究針對癌細胞遷移的細胞分子機制進行探討,文獻指出細胞內之Rho GTPases family家族成員是細胞遷移的訊息的匯集者,掌控由細胞外傳遞之訊息、如生長因子;至細胞內訊息、如致癌基因蛋白(Oncoprotein)等,而調控細胞骨架的動態改變(Dynamic)、影響細胞型態與細胞遷移。在細胞遷移機制中,細胞藉由Rho GTPases調控前端(Leading edge)形成細胞偽足(Lamellipodia)而向前延展(Protrusion)、Rac GTPase調控後端(Rare-end)產生張力纖維(Stress fiber)而收縮(Retraction)、以及c-Src與Focal adhesion kinase(FAK)調控前後Focal Adhesion消長(Turnover)而改變貼附能力(adhesion)等Subcellular events,影響整體細胞的遷移。 Cyclin-dependent kinase 5為serine/threonine kinase,雖與Cdk家族成員結構相似,但並不參與細胞週期調控。Cdk5透過結合p35/p39參與神經細胞的發育和功能調節,也在神經退化性疾病中扮演重要角色,近年來研究也陸續指出Cdk5在許多種類癌細胞皆有活化,而對癌細胞的惡化(Progression)有相當程度的貢獻。此外,過去在神經系統、血管內皮細胞與眼組織上皮細胞的研究指出Cdk5與Rho GTPases family及Src、FAK等關鍵細胞骨架調控者皆有交互作用,並藉此影響神經發育時細胞之遷移延展、表皮傷口癒合以及血管新生(Angiogenesis)等作用,然而Cdk5在癌細胞遷移機制上的調控目前了解的十分有限;因此本研究即探討Cdk5在癌細胞中是否經由類似的訊息傳遞路徑,即探討Cdk5透過Rho GTPases family調控細胞骨架動態改變影響細胞偽足或張力纖維結構、及細胞貼附能力,並藉此影響癌細胞的細胞遷移。 本研究首先藉由傷口癒合分析法(Wound healing assay)證實Cdk5具有促進乳癌、肺癌、膀胱癌細胞遷移的能力,並利用細胞免疫染色法發現活化Cdk5有集中分布於細胞偽足與Focal adhesion的現象、且抑制Cdk5能使結構消失而暗示Cdk5可能對細胞偽足與Focal adhesion結構形成有貢獻。接著本研究藉由促進或抑制Cdk5活性發現Cdk5正向調控著下游Rho GTPase的effector – ROCK而進一步促進張力纖維結構的形成,並藉此影響細胞的遷移。另一方面,本研究也發現Cdk5與致癌基因蛋白c-Src存在交互作用關係,兩者共免疫沉澱(Co-immunopercipitation)與共位(Co-localization)於細胞偽足顯示著兩者的間接交互作用關係。後續實驗也釐清乳癌細胞中c-Src居於調控路徑上游,藉由直接磷酸化Cdk5而調控著Cdk5的活性以及Cdk5活化分布位置;同時Cdk5也能夠反向藉由促進c-Src蛋白降解而抑制c-Src活性,顯示c-Src促進Cdk5活性、而活化Cdk5反過去抑制過度活化c-Src的相互調控模式。最後本研究證實c-Src能夠藉由正向調控Cdk5 – ROCK訊息傳遞路徑而促進張力纖維結構形成與細胞遷移,顯示c-Src – Cdk5 – ROCK訊息傳遞鍊調控張力纖維結構為Cdk5影響癌細胞遷移能力的路徑之一,彰顯了Cdk5在癌細胞遷移中機制的重要性;本研究之成果或可提供Cdk5作為癌症治療評估指標之標的,為癌症治療盡一份貢獻。
Cancer cell migration, the first step of cancer metastasis which causes poor diagnosis of patients with cancer, was extensively studied in recent decades. It is now widely accepted that the major subcellular mechanisms of migration is the leading edge protrusion by Rac GTPase regulated lamellipodium, the rare-end retraction by Rho GTPase regulated stress fiber contraction, and adhesions dynamic between front and rare by Src-FAK(Focal adhesion kinase) mediated focal adhesion turnover. All these steps must be coordinated both in space and time to generate productive, net forward movement, and the Rho GTPases family member – Rac and Rho GTPases, take center stage of upstream signaling to downstream cytoskeleton regulations. Cyclin-dependent kinase 5 (Cdk5), which belongs to Cdk family but not involves cell cycle regulation, plays roles ubiquitously in proliferation, apoptosis, cytoskeleton organization and motility of many cell types. Previous study shows that Cdk5 promotes metastasis of prostate cancer, glioblastoma, and pancreatic cancer, which suggest that Cdk5 regulates cancer metastasis across cancer types, but general principle still remains unclear. Several reports focus on angiogenesis and corneal wound healing that demonstrates Cdk5 promotes endothelial cell migration through regulating Rac GTPases mediated lamellipodia protrusion, regulates stress fiber formation and migration of cornel and lens epithelial cell through Rho GTPases, and interacts with oncoprotein c-Src to maintain stress fibers and undifferentiated state of len epithelial cells. These findings may also present in cancer cells, and still need provement. Here we show that Cdk5 interacted with oncoprotein c-Src and regulated Rho GTPases effector – ROCK mediated stress fiber formation to promote cancer cell migration. First we confirmed the post-effect of Cdk5 on cell migration of breast, lung and bladder cancers. Next we found pY15-Cdk5 localized at lamellipodia and focal adhesion, and these Cdk5 localization as well as stress fiber structure was distrupted by Cdk5 inihibition, suggesting Cdk5 might play roles on these structures. We next confirmed that Cdk5 promoted cell migration through up-regulating ROCK protein level and ROCK mediated stress fiber formation, indicating Cdk5 might regulate cancer cell migration through Rho/ROCK pathway and stress fiber organization. Futhermore, we presented evidence that oncoprotein c-Src directly phosphorylated, then up-regulated Cdk5 activity, and regulated stress fiber formation and cancer cell migration through Cdk5-Rho/ROCK pathway; meanwhile Cdk5 reversly down-regulated activated-c-Src protein level through proteasome-dependent degradation, suggesting a feed-back loop. Taken together, our present data suggests that Cdk5 plays important roles in cytoskeletal organization and cell migration of cancer cells, and might involve in oncoprotein c-Src regulated cancer cell migration by direct interacted with c-Src.
URI: http://hdl.handle.net/11455/20220
其他識別: U0005-1508201313314100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1508201313314100
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.