Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20221
標題: Vibrio alginolyticus KL-10之褐藻膠裂解酶基因的選殖、特性分析及異源表現
Cloning, characterization and heterologous expression of the alginate lyase gene of Vibrio alginolyticus KL-10
作者: 張辰宇
Chang, Chen-Yu
關鍵字: 褐藻膠裂解酶
alginate
Vibrio alginolyticus KL-10
alginate lyase
Vibrio alginolyticus KL-10
出版社: 生命科學系所
引用: 秦益民、劉洪武、李可昌、安豐欣,(2008)。"海藻酸" 中國輕工業出版社。 朱冠穎,(2007)。"白蟻腸道細菌Clostridium xylanolyticum Ter3 之分離及其糖化纖維素與產氫活性分析" 國立中興大學生命科學系碩士論文。 張容慈,(2000)"電轉形法應用在選殖基因於大腸菌及乙醇生產菌Zymomonas mobilis" 國立中正大學化學工程研究所碩士論文 李麗妍、管華詩、江曉路、郝劍君,(2011)。 "海藻工具酶-褐藻膠裂解酶研究進展" Chinese journal of Biotechnology 27(6): 838-845. 胥晴晴、朱雲霞、王克平、葉江、張惠展,(2013)。"解藻酸弧菌株ATCC 17749中海藻酸裂解酶基因的克隆與鑑定" Journal of East China University of Science and Technology (NaturalScienceEdition) 39(1): 29-41. 張緒、趙琳、乾隆、黃庶試、伊日布斯,(2012)。"海藻酸分解菌研究進展" Chinese Bulletin of Life Science 24(5): 475-482. 陳芃,(2010)。"微藻引領第三代生質燃料發展" 能源報導: 23-26. 經濟部能源局,(2012)。"2012年能源產業技術白皮書" 劉岩、江曉路、管華詩,(2001)。"褐藻膠裂解酶研究進展" 中國水產科學Journal of Fishery Sciences of China 7(4): 99-103. 潘崇良,(2010)。"利用藻類生產生質能源" 科學發展 448: 26-32. Alkawash, M. A., J. S. Soothill and N. L. Schiller (2006). "Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms." APMIS 114: 131-138. Bagdasarian, M., R. Lurz, B. Ruckert, F. C. H. Franklin, M. M. Bagdasarian, J. Frey and K. N. Timmis (1981). "Specific-purpose plasmid cloning vectors II. Broad host range, high copy number, RSF 1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas." Gene 16(1-3): 237-247. Barona, A. J., T. Y. Wonga, S. J. Hicksb, P. Gacesab, D. Willcocka and M. J. McPherson (1994). "Alginate lyase from Klebsiella pneumoniae, subsp. aerogenes gene cloning, sequence analysis and high-level production in Escherichia coli." Gene 143(1): 61-66. Bertani, G. (1951). "Studies of Lysogenesis." Journal of Bacteriol 62(3): 293-300. Brachmann, C. B., A. Davies and G. J. Cost (1998). "Designer Deletion Strains derived from Saccharomyces cerevisiae S288C: a Useful set of Strains and Plasmids for PCR-mediated Gene Disruption and Other Applications." Yeast 14: 115-132. Bruton, T., H. Lyons, Y. Lerat and M. Stanley (2009). "A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland." Sustainable Energy Ireland. Cao, L., L. Xie, X. Xue, H. Tan, Y. Liu and S. Zhou (2007). "Purification and characterization of alginate lyase from Streptomyces species strain A5 isolated from Banana rhizosphere." Journal of Agricultural and Food Chemistry 55: 5113-5117. Curtis, S. E. and J. R. Y. Rawson (1981). "Characterization of the nuclear ribosomal DNA of Euglena gracilis." Gene 15: 237-247. De Ley, J. and J. Swing (1976). "Phenotypic Description, Numerical Analysis, and Proposal for an Improved Taxonomy and Nomenclature of the Genus Zymomonas Kluyver and van Niel 1936." International Journal of Systematic Bacteriology 26: 146-157. Donnan, F. and R. Rose (1950). "Osmotic pressure, molecular weight and viscosity of sodium alginate." The Canadian Journal of Research 28: 105-113. Draget, K. (2009). "Alginates. In: Phillips GO, Williams PA, editors." Handbook of hydrocolloids: 379-395. Duan, G., F. Han and W. Yu (2009). "Cloning, sequence analysis, and expression of gene alyPI encoding an alginate lyase from marine bacterium Pseudoalteromonas sp. CY24." Can J Microbiol 55(9): 1113-1118. Flynn, P. J. and R. J. Reece (1999). "Activation of Transcription by Metabolic Intermediates of the Pyrimidine Biosynthetic Pathway." Molecular and Cellular Biology 19(1): 882-888. Foley, P. M., E. S. Beach and J. B. Zimmerman (2011). "Algae as a source of renewable chemicals: opportunities and challenges." Green Chemistry 13(6): 1399. Haug, A., B. Larsen and O. Smidsrod (1967). "Studies on the sequence of uronic acid residues in alginic acid." Acta Chemica Scandinavica 21: 691-704. Jiraskova, A., L. Vitek, J. Fevery, T. Ruml and P. Branny (2005). "Rapid protocol for electroporation of Clostridium perfringens." J Microbiol Methods 62(1): 125-127. Joung, J. K., E. I. Ramm and C. O. Pabo (2000). "A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions." Proc Natl Acad Sci U S A 97(13): 7382-7387. Kawai, S., W. Hashimoto and K. Murata (2010). "Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism." Bioeng Bugs 1(6): 395-403. Kim, D. E., E. Y. Lee and H. S. Kim (2009). "Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5." Mar Biotechnol (NY) 11(1): 10-16. Kim, H. S., C.-G. Lee and E. Y. Lee (2011). "Alginate lyase: Structure, property, and application." Biotechnology and Bioprocess Engineering 16(5): 843-851. Kitamikado, M., K. Yamaguchi, C. H. Tseng and B. Okabe (1990). "Method Designed To Detect Alginate-Degrading Bacteria." Applied and Environmental Microbiology 56(9): 2939-2940. Kong, J. Y., S. H. Hwang, B. J. Kim, S. K. Bae and J. D. Kim (1997). "Cloning and expression of an agarase gene from a marine bacterium Pseudomonas sp. w7." Biotechnology Letters 19: 23-26. Kraan, S. (2010). "Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production." Mitigation and Adaptation Strategies for Global Change 18(1): 27-46. Masayuki, W., A. Sakatoku, F. Noda, M. Noda, D. Tanaka and S. Nakamura (2012). "Isolation and characterization of Microbulbifer species 6532A degrading seaweed thalli to single cell detritus particles." Biodegradation 23(1): 93-105. Mermelstein, L. D., N. E. Welker, G. N. Bennett and E. T. Papoutsakis (1992). "Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824." Nature Biotechnology 10: 190-195. Nakada, H. and P. Sweeny (1967). "Alginic acid degradation by eliminases from abalone hepatopancreas." The Journal of Biological Chemistry 242: 845-851. Park, H. H., N. Kam, E. Y. Lee and H. S. Kim (2012). "Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3." Mar Biotechnol (NY) 14(2): 189-202. Pawar, S. N. and K. J. Edgar (2012). "Alginate derivatization: a review of chemistry, properties and applications." Biomaterials 33(11): 3279-3305. Peter, G. and F. S. Wusteman (1990). "Plate Assay for Simultaneous Detection of Alginate Lyases and Determination of Substrate Specificity." Applied and Environmental Microbiology 56(7): 2265-2267. Preiss, J. and G. Ashwell (1962). "Alginic Acid Metabolism in Bacteria." The Journal of Biological Chemistry 237(2): 309-316. Reith, J. H., E.P. Deurwaarder, K. Hemmes and E. Biomassa (2005). "BIO-OFFSHORE Grootschalige teelt van zeewieren in combinatie met offshore windparken in de Noordzee." Energy research Centre of the Netherlands. Roesijadi, G., S. B. Jones, L. J. Snowden-Swan and Y. Zhu (2010). "Macroalgae as a Biomass Feedstock A Preliminary Analysis." prepared for the U.S. Department of Energy under contract DE-AC05-76RL01830 by Pacific Northwest National Laboratory. Romeo, T. and J. F. Preston (1986). "Purification and Structural Properties of an Extracellular (1-4)-beta-D-Mannuronan-Specific Alginate Lyase from a Marine Bacterium." Biochemistry 25: 8385-8391. Ryu, M. and E. Y. Lee (2011). "Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp. MJ-3." Journal of Industrial and Engineering Chemistry. Schaumann K and G. Weide (1990). "Enzymatic degradation of alginate by marine fungi." Hydrobiologia 204/205: 589-596. Seiderer, L., R. Newell and P. Cook (1982.). "Quantitative significance of style enzymes from two marine mussels (Choromytilus meridionalis Krauss and Perna perna Linnaeus) in relation to diet." Marine Biology Letters 3: 257-271. Shimokawa, T., S. Yoshida, T. Takeuchi, K. Murata, H. Kobayashi and I. Kusakabe (1997). "Purification and characterization of extracellular poly(beta-D-1,4-mannuronide) lyase from Dendryphiella salina IFO 32139." Bioscience, Biotechnology, and Biochemistry 61: 636-640. Sim, S. J., K. S. Baik, S. C. Park, H. N. Choe, C. N. Seong, T. S. Shin, H. C. Woo, J. Y. Cho and D. Kim (2012). "Characterization of alginate lyase gene using a metagenomic library constructed from the gut microflora of abalone." J Ind Microbiol Biotechnol 39(4): 585-593. Skj°ak-Brak, G., B. Larsen and H. Grasdalen (1985). "The role of O-acetyl groups in the biosynthesis of alginate by Azotobacter vinelandii." Carbohydrate Research 145: 169-174. Smith, J. L. and B. J. Dell (1990). "Capability of selective media to detect heat-injured Shigella flexneri." Journal of Food Protection 53: 141-144. Suda, K., Y. Tanji, K. Hori and H. Unno (1999). "Evidence for a novel Chlorella virus-encoded alginate lyase." FEMS Microbiology Letters 180: 45-53. Takeda, H., F. Yoneyama, S. Kawai, W. Hashimoto and K. Murata (2011). "Bioethanol production from marine biomass alginate by metabolically engineered bacteria." Energy & Environmental Science 4(7): 2575. Takeshita, S., T. Oda and T. Muramatsu (1995). "Spectroscopic studies on denaturants and guluronate lyase from a marine bacterium." Bioscience, Biotechnology, and Biochemistry 59: 881-885. Thompson, C., A. Vicente, R. Souza, A. Vasconcelos, T. Vesth, N. J. Alves, D. Ussery, T. Iida and F. Thompson (2009). "Genomic taxonomy of Vibrios." BMC Evolutionary Biology 27(9): 258. Tseng, C. H., K. Yamaguchi and M. Nishimura (1992). "Alginate Lyase from Vibrio alginolyticus ATCC 17749." Nippon Suisan Gakkaishi : Bulletin of the Japanese Society for the Science of Fish 58(11): 2063-2067. Wainwright, M. (1980). "Alginate degradation by the marine fungus Dendryphiella salina." Marine Biology Letters 1: 351-354. Wainwright, M. and V. Sherbrock-Cox (1981). "Factors influencing alginate degradation by the marine fungi: Dendryphiella salina and D. arenaria." Botanica Marina 24: 489-491. Wang, Y., F. Han, B. Hu, J. Li and W. Yu (2006). "In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate." Nutrition Research 26: 597-603. Wang, Z. X., J. R. Broach and S. C. Peiper (2006). "Functional Expression of CXCR4 in Saccharomyces cerevisiae in the Development of Powerful Tools for the Pharmacological Characterization of CXCR4.pdf." Methods in Molecular Biology 332: 115-127. Wargacki, A. J., E. Leonard, M. N. Win, D. D. Regitsky, C. N. Santos, P. B. Kim, S. R. Cooper, R. M. Raisner, A. Herman, A. B. Sivitz, A. Lakshmanaswamy, Y. Kashiyama, D. Baker and Y. Yoshikuni (2012). "An engineered microbial platform for direct biofuel production from brown macroalgae." Science 335(6066): 308-313. Wong, T. Y., L. A. Preston and N. L. Schiller (2000). "ALGINATE LYASE Review of Major Sources and Enzyme Characteristics, Structure-Function Analysis, Biological Roles, and Applications.pdf." Annual Reviews of Microbiol 54: 289-340. Yoon, H. J., W. Hashimoto, O. Miyake, M. Okamoto, B. Mikami and K. Murata (2000). "Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases." Protein Expr Purif 19(1): 84-90.
摘要:   在全球暖化及能源危機的大環境下,生質能源更加的受到重視,其中以生長時不與糧食作物爭奪土地、生產資源,及不具有轉化過程中難以被分解的木質纖維素的大型海藻做為原料生產生質能源最具有潛力。在大型海藻的褐藻個體中,含量最高的碳水化合物即是褐藻膠 (alginate),若能夠研發降解褐藻膠的技術並搭配醱酵產程,以褐藻做為原料生產生質能源將會是解決能源問題的一個契機。本研究於基隆潮間帶分離到一株能夠分解褐藻膠並且能夠以其做為單一碳源生長的溶藻弧菌Vibrio alginolyticus KL-10。以全基因體已解序的Vibrio alginolyticus 40B的褐藻膠裂解酶 (alginate lyase) 基因之同源性序列設計引子對alg-F及alg-R對V. alginolyticus KL-10染色體DNA進行PCR,成功地從其中增幅出一段2 kb的DNA片段,將此PCR產物以TA cloning的方式接合至yT&A載體,重組質體yT&A-alg以熱轉型法送入E. coli DH5α保存,以核苷酸定序分析得知其中1566 bp為藻膠裂解酶基因,可轉譯出521個胺基酸,分子量約為60 kDa。重組質體yT&A-alg以限制酶Hind III去除褐藻膠裂解酶基因中的signal peptide序列後,以Hind III切位重組至表現載體pET30c,得到的重組質體pET30c-alg以熱休克轉型法送至E. coli BL21 (DE3),轉型株E. coli BL21 (DE3) (pET30c-alg) 以1 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) 於16℃下誘導表現18小時,於胞內粗酵素液可測得褐藻膠裂解酶的活性69.82 unit/mg。胞內粗酵素液經由nickel column純化後的洗提液,可測得褐藻膠裂解酶的活性135.82 unit/mg,經由SDS-PAGE及zymogram分析可知褐藻膠裂解酶融合蛋白的大小約為70 kDa,在20-37℃及pH 7-9中具有酵素活性,且在30℃及pH 8有最高酵素活性。在改造生質能源生產菌的部分已成功構築穿梭質體pKT230-alg及pIMP1-alg,但對於生物資源保存及研究中心 (BCRC) 購得的Zymomonas mobilis ATCC 10988及本實驗室前人篩選到一株能夠生產氫氣的Clostridium xylanolyticum Ter3皆無法以電穿孔轉形獲得帶有重組質體的轉形株,僅有Saccharomyces cerevisiae BY4741成功的以LiAc / PEG轉型獲得帶有重組質體pRS426-alg的轉型株,但轉形株S. cerevisiae BY4741 (pRS426-alg) 目前尚未測得褐藻膠裂解酶基因的表現活性。
Global warming and energy crisis are major drivers for a shift from the use of fossil fuels to renewable energy, and then, brown macroalgae exhibit several key features of an ideal feedstock for production of biofuels, such as requiring no arable land, fertilizer, or fresh water resources. Alginate is the most abundant sugars in brown macroalgae, therefore when microorganism fermentation combine alginate degradation technology, it will be a new strategy for bioethanol production. This study has isolated a gram-negative bacterium, which could degrade alginate and use as the sole carbon source for its growth, and it was taxonomically identified as Vibrio alginolyticus KL-10 by 16S rRNA sequencing. By referring to the homologus sequence of alginate lyase gene of Vibrio alginolyticus 40B which has been finished whole genome sequencing to design the PCR primers, the alginate lyase gene of Vibrio alginolyticus KL-10 was amplified from genomic DNA and sequenced. The alginate lyase gene was 1566 base pairs in length and could code for a protein product of 57.6 kDa including signal peptide. Cloning this gene with expression vector pET30c into the E.coli BL21 (DE3) and inducing with 1 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) at 16℃ for 18 hour, the alginate lyase activity of 69.82 Umg-1 was obtained from the cell curde extract, but the activity increased to 135.82 Umg-1 after purifing by nickel column. SDS-PAGE and zymogram analysis displayed that the fusion protein of alginate lyase and 6X His-tag had a molecular mass of 70 kDa, its optimum temperature and pH for enzyme activity were 30℃ and pH 8, respectively. In order to heterologously express the alginate lyase gene in ethanol-producing microorganisms, four shuttle vectors: pKT230 of Zymomonas mobilis/E.coli, pIMP1 of the Clostridium spp./E. coli, and pRS423 and pRS426 of Saccharomyces cerevisiae/E. coli were used to construct recombinant plasmids pKT230-alg, pIMP1-alg ,pRS423-alg, pRS426-alg. However, pKT230-alg and pIMP1-alg can not be transformed into Z. mobilis and C. xylanolyticum Ter3, respectively, by electroporation transformation. On the other hand, only pRS426-alg was successfully introduced into S. cerevisiae BY4741 by LiAc/PEG transformation, but for unknown reason the transformant did not express alginate lyase activity.
URI: http://hdl.handle.net/11455/20221
其他識別: U0005-2108201318300000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201318300000
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.